izpis_h1_title_alt

Izrek o sedmih krožnicah : delo diplomskega seminarja
ID Cvetković, Teodora (Author), ID Boc Thaler, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,66 MB)
MD5: 979FAAA0442A1F7B1001110F61B3A7B3

Abstract
V diplomskem delu bomo predstavili pojem hiperbolične geometrije, ki se od evklidske geometrije razlikuje le v enem aksiomu. Hiperbolično geometrijo lahko predstavimo z več različnimi modeli, kot so Beltrami-Kleinov model na enotskem disku ${\mathbb D}$, Poincaréjev model v zgornji polravnini ${\mathbb H}$ in Poincaréjev model na enotskem disku ${\mathbb D}$, ki pa pa so med sabo ekvivalentni. Nas bo najbolj zanimal Poincaréjev model, saj v njem koti in krožnice sovpadajo s koti in krožnicami iz evklidske geometrije. Izrek o sedmih krožnicah je rezultat evklidske geometrije, ki ga lahko dokažemo s klasičnimi orodji. Kot bomo videli v nadaljevanju pa obstaja tudi precej eleganten dokaz tega izreka s pomočjo hiperbolične geometrije. Za konec nam ta pristop omogoči tudi posplošitev izreka.

Language:Slovenian
Keywords:hiperbolična geometrija, hiperbolična metrika, Poincaréjev model na disku, Möbiusove transformacije, horodiski, geodetke
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-164013 This link opens in a new window
UDC:517.5
COBISS.SI-ID:212260099 This link opens in a new window
Publication date in RUL:16.10.2024
Views:88
Downloads:31
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Seven Circles Theorem
Abstract:
In this thesis, we will introduce the concept of hyperbolic geometry, which differs from Euclidean geometry in only one axiom. Hyperbolic geometry can be represented by several different models, such as the Beltrami-Klein model on the unit disk ${\mathbb D}$, the Poincaré model in the upper half-plane ${\mathbb H}$, and the Poincaré model on the unit disk ${\mathbb D}$, which are equivalent to each other. We will be most interested in the Poincaré model, as angles and circles in it correspond to those in Euclidean geometry. The seven circles theorem is a result of Euclidean geometry, which can be proven using classical tools. However, as we will see later, there is also a rather elegant proof of this theorem using hyperbolic geometry. Finally, this approach also allows for a generalization of the theorem.

Keywords:hyperbolic geometry, hyperbolic metric, Poincaré model on unit disc, Möbius transformations, horodisc, geodesic

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back