izpis_h1_title_alt

Strojno učenje za optimizacijo strategije digitalnega oglaševanja : magistrsko delo
ID Banevec, Jernej (Author), ID Todorovski, Ljupčo (Mentor) More about this mentor... This link opens in a new window, ID Jazbec, Metod (Comentor)

.pdfPDF - Presentation file, Download (1,83 MB)
MD5: 1F1A1D9B8EBEEBA9CB35AF0DE2A4B522

Abstract
Digitalno oglaševanje je spremenilo način, kako podjetja nagovarjajo potencialne uporabnike svojih storitev. V tem delu opredelimo problem optimizacije dobička iz digitalnega oglaševanja za podjetje, ki se ukvarja z razvojem mobilnih aplikacij. Na podlagi analize podatkov namišljenega podjetja razvijemo inovativen model za določanje optimalnih kontrolnih nastavitev za kampanje digitalnega oglaševanja, to so izplačila za prenos aplikacije. V okviru raziskave preizkusimo različne modele strojnega učenja. Razviti model omogoča napovedovanje števila plačljivih in neplačljivih prenosov aplikacij glede na nastavljena izplačila, kar podjetju omogoča iskanje optimalnega razmerja med prihodki in stroški oglaševanja. Optimalne vrednosti kontrolnih spremenljivk, tj. nastavljenih izplačil za vsa uporabljena omrežja digitalnega oglaševanja, poiščemo z uporabo Bayesove optimizacije ločeno za vsako aplikacijo in vsak segment, ki predstavlja kombinacijo države in operacijskega sistema uporabnikovega telefona.

Language:Slovenian
Keywords:strojno učenje, digitalno oglaševanje, optimizacija dobička, Bayesova optimizacija, napovedno modeliranje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-163769 This link opens in a new window
UDC:519.8
COBISS.SI-ID:212591107 This link opens in a new window
Publication date in RUL:10.10.2024
Views:109
Downloads:1188
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Machine learning for optimizing digital marketing strategy
Abstract:
Digital advertising has transformed the way companies reach potential users of their services. In this work, we define the problem of profit optimization in digital advertising for a company that develops mobile applications. Based on the analysis of data from an imaginary company, we develop an innovative model for determining the optimal control settings for digital advertising campaigns, specifically the cost per install (CPI). In the course of the research, we test various machine learning models. The developed model enables the prediction of the number of paid and organic app installs based on the set CPIs, allowing the company to find the optimal balance between advertising revenues and costs. The optimal values of control variables, i.e., the set CPIs for all used advertising networks, are determined using Bayesian optimization separately for each application and each segment, which represents a combination of country and user's phone operating system.

Keywords:machine learning, digital advertising, profit optimization, Bayesian optimization, predictive modeling

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back