izpis_h1_title_alt

Kalmanov filter : delo diplomskega seminarja
ID Houška, Luka (Author), ID Perman, Mihael (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (499,74 KB)
MD5: 89E5471AD116B25A83153FAB9B9225B2

Abstract
Diplomska naloga spada v področje statistike, z manjšimi vložki funkcionalne analize. Definirali bomo pojme kot so cenilka z minimalno varianco in najboljša linearna cenilka z minimalno varianco in podali načine za njihov izračun. Podali bomo načine za izračun psevdoinverza, ki ga potrebujemo za izračun iskanih cenilk v številnih izrekih. Pokazali bomo, kako se s pomočjo rekurzivnih enačb izračuna cenilke in kovariance napak ocene. Glavni izrek diplomske naloge je Kalmanov filter. Izrek bomo dokazali in pokazali, kako izračunati začetne ocene, ki jih potrebujemo, da Kalmanov filter lahko poženemo.

Language:Slovenian
Keywords:cenilka z minimalno varianco, linearna cenilka, pravokotna projekcija, rekurzivno iskanje cenilk, Kalmanov filter, Fischerjeva ocena
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-163765 This link opens in a new window
UDC:519.2
COBISS.SI-ID:211117315 This link opens in a new window
Publication date in RUL:10.10.2024
Views:166
Downloads:57
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The Kalman filter
Abstract:
The bachelor's thesis falls within the field of statistics, with some elements of functional analysis. We will define concepts such as the minimum variance estimator and the best linear unbiased estimator with minimum variance, and we will provide methods for calculating them. We will present methods for calculating the pseudoinverse, which is needed for calculating the desired estimators in numerous theorems. We will demonstrate how to calculate estimators and covariance of estimation errors using recursive equations. The main theorem of the thesis is the Kalman filter. We will prove the theorem and show how to calculate the initial estimates needed to run the Kalman filter.

Keywords:minimum variance estimator, linear estimators, perpendicular projection, recursive estimation, the Kalman filter, Fischer estimation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back