izpis_h1_title_alt

Segmentacija CT slik s postopki umetne inteligence z orodjem Monai Label in programom 3D-Slicer : magistrsko delo
ID Oletič, Diana (Author), ID Žibert, Janez (Mentor) More about this mentor... This link opens in a new window, ID Kocet, Laura (Comentor), ID Mekiš, Nejc (Reviewer)

.pdfPDF - Presentation file, Download (1,87 MB)
MD5: 8B5B67647BA549392CEAA5D7A31C8342

Abstract
Uvod: Segmentacija medicinskih slik se v klinični praksi uporablja vsakodnevno. Čeprav ročna segmentacija še zmeraj velja za zlati standard, je časovno zelo zahtevna. Z razvojem globokega učenja pa se vse bolj uveljavljajo polavtomatski in avtomatski modeli segmentacije, ki predstavljajo učinkovito alternativo ročni segmentaciji. Eden izmed programov za segmentacijo medicinskih slik je 3D Slicer, ki je brezplačna odprtokodna programska aplikacija. Med drugim ponuja tudi različne razširitve, kot je Monai Label, ki je inteligentno orodje za avtomatsko segmentacijo medicinskih slik in temelji na metodah globokega učenja. Namen: Namen magistrske naloge je vzpostavitev spletne aplikacije Monai Label, integriranje s programom 3D Slicer in testiranje njunega delovanja na prevzetih CT posnetkih. Primerjali smo polavtomatske segmentacijske postopke programa 3D Slicer z avtomatskimi segmentacijskimi postopki razširitve Monai Label na CT študijah, pridobljenih iz spletne baze TCIA, kjer smo segmentirali jetra, ledvice in mehur. Metode dela: V raziskavi smo pokazali vzpostavljanje spletne aplikacije Monai Label in vzpostavljanje komunikacije s programom 3D Slicer. Nato smo izvedli segmentacije jeter, ledvic in mehurja na prenešenih CT študijah s polavtomatskim postopkom segmentacije s povečevanjem območij in z avtomatskim postopkom segmentacije v razširitvi Monai Label, pri čimer smo uporabili segmentacijski model whole_body_ct_segmentation. Za evalvacijo učinkovitosti segmentacijskih postopkov smo izvedli izračun Dice, kjer smo za referenčne segmentacije uporabili segmentacije iz spletne baze TCIA, bolj natančno CT-ORG slikovnega gradiva. Rezultati: Analiza rezultatov v naši raziskavi potrjuje visoko učinkovitost tako polavtomatskih kot avtomatskih metod segmentacij za jetra, ledvice in mehur. Polavtomatska segmentacija jeter in ledvic je dosegla povprečne Dice koeficiente 0,95 in 0,91, kar je primerljivo z avtomatskimi segmentacijami, kjer smo z modelom whole_body_ct_segmentation dosegli Dice koeficiente 0,96 za jetra in 0,94 za ledvice. Segmentacija mehurja je pokazala podobno visoko učinkovitost, s povprečnimi Dice koeficienti 0,92 tako pri polavtomatskih, kot avtomatskih metodah. Avtomatske segmentacije so bile izvedene bistveno hitreje, v povprečju v 1,64 minutah za 104 organe, kar predstavlja 1116-krat hitrejšo izvedbo v primerjavi s polavtomatskimi metodami. Razprava in zaključek: 3D Slicer se je izkazal kot enostaven za uporabo z vidika neizkušenega uporabnika, tudi integracija z razširitvijo Monai Label je bila nezahtevna. Evalvacija metod je pokazala, da avtomatski modeli, kot je whole_body_ct_segmentation, dosežejo visoke učinkovitosti Dice in neprimerljive časovne prihranke v primerjavi s polavtomatskimi segmentacijami. Uporabnost segmentacijskih metod je široka, od načrtovanja zdravljenja do diagnostike in izobraževanja ter raziskav, kjer avtomatske segmentacije omogočajo natančnejše in hitrejše postopke. Kljub prednostim avtomatskih metod pa je potrebno upoštevati kakovost modelov in primerne nastavitve za optimalne rezultate, še posebej pri uporabi v kliničnih okoljih.

Language:Slovenian
Keywords:magistrska dela, radiološka tehnologija, Monai, Monai Label, 3D Slicer, segmentacija, radiologija, CT, jetra, ledvice, mehur
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:ZF - Faculty of Health Sciences
Place of publishing:Ljubljana
Publisher:[D. Oletič]
Year:2024
Number of pages:61 str.
PID:20.500.12556/RUL-163085 This link opens in a new window
UDC:616-07
COBISS.SI-ID:209879555 This link opens in a new window
Publication date in RUL:02.10.2024
Views:131
Downloads:79
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:CT image segmentation using artificial intelligence processes with Monai Label tool and 3D-Slicer program : master thesis
Abstract:
Introduction: Medical image segmentation is used daily in clinical practice. Although manual segmentation is still considered the gold standard, it is very time consuming. However, with the development of deep learning, semi-automated and automated segmentation models are gaining popularity as an efficient alternative to manual segmentation. One of the medical image segmentation software is 3D Slicer, which is a free open-source software application. It also offers various extensions such as Monai Label, which is an intelligent tool for automatic medical image segmentation based on deep learning methods. Purpose: The aim of the master thesis is to establish Monai Label web application, integrate it with 3D Slicer and test its performance on downloaded CT scans. We compared the semi-automatic segmentation procedures of 3D Slicer with the automatic segmentation procedures of the Monai Label extension on CT studies acquired from the TCIA online database, where we segmented the liver, kidneys and bladder. Methods: In this study, we demonstrated the establishment of the Monai Label web application and the establishment of communication with the 3D Slicer program. Furthermore, we performed segmentations of the liver, kidneys, and bladder on the downloaded CT studies using a semi-automatic region-growing segmentation procedure and an automatic segmentation procedure in the Monai Label extension, using the whole_body_ct_segmentation model. To evaluate the effectiveness of the segmentation procedures, we performed a Dice calculation using segmentations from the TCIA online database, more precisely the CT-ORG image database, as reference segmentations. Results: Analysis of the results in our research confirms the high efficiency of both semi-automatic and automatic segmentation methods for liver, kidneys and bladder. The semi-automatic segmentation of liver and kidneys achieved average Dice coefficients of 0,95 and 0,91, which is comparable to automatic segmentations, where we achieved Dice coefficients of 0,96 for liver and 0,94 for kidneys with the whole_body_ct_segmentation model. Bladder segmentation showed similarly high performance, with average Dice coefficients of 0,92 for both semi-automatic and automatic methods. Automatic segmentations were performed significantly faster, in an average of 1,64 minutes for 104 organs, which represents 1116 times faster performance compared to semi-automatic methods. Discussion and conclusion: 3D Slicer proved to be easy to use from inexperienced user standpoint, and integration with the Monai Label extension was also effortless. Evaluation of the methods showed that automatic models such as whole_body_ct_segmentation achieve high Dice efficiencies and incomparable time savings compared to semi-automatic segmentations. The applications of segmentation methods are wide ranging, from treatment planning to diagnostics and education to research, where automated segmentations allow for more accurate and faster procedures. Despite the advantages of automatic methods, the quality of the models and the appropriate settings need to be considered for optimal results, especially when used in clinical settings.

Keywords:master's theses, radiologic technology, Monai, Monai Label, 3D Slicer, segmentation, radiology, CT, liver, kidneys, bladder

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back