izpis_h1_title_alt

Phantom relaxation in non-Hermitian systems
ID Bensa, Jaš (Author), ID Žnidarič, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (8,54 MB)
MD5: 9DB95BA3EDAAFD048CFA32D5A8253C1E

Abstract
Oftentimes, intuition gained from simple systems is used to predict the behavior of more complex scenarios. For example, if we iterate a vector with a Hermitian matrix its norm (or inner product with another vector) is expected to evolve exponentially in time with the exponent equal to the largest eigenvalue of the matrix. Believing that this holds in non-Hermitian systems is wrong. In infinite systems and for general vectors, it is not the spectrum of the matrix that predicts how the iterated quantity will behave, but rather the spectrum of the slightly perturbed matrix, i.e., the pseudospectrum. In this thesis, we will explore quantities iterated with non-Hermitian matrices. In the majority of the examples that we will delve into, these quantities show a two-stage relaxation. In the first stage, the exponential behavior is determined by the largest pseudoeigenvalue of the iterated matrix. Interestingly, this stage persists up to times that scale with the system size, meaning that in infinite systems it is the only kind of behavior. The second stage is given by the largest eigenvalue, as one expects in Hermitian systems. Some physical examples that can be evolved using this setting are purity and out-of-time-ordered correlations in random quantum circuits and certain biased random walks. The setting we will explore is quite general and thus it might be applied in a wide variety of physical fields. Whenever one encounters iterations with a non-Hermitian transfer matrix, one can refer to the work presented here and hopefully predict the results of the iteration.

Language:English
Keywords:pseudospectrum, random quantum circuits, non-Hermiticity, non-normal matrix, Markov chain, transfer matrix, entanglement, operator correlations
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-162859 This link opens in a new window
COBISS.SI-ID:209938179 This link opens in a new window
Publication date in RUL:28.09.2024
Views:153
Downloads:23
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Fantomska relaksacija v nehermitskih sistemih
Abstract:
Pogosto uporabljamo intuicijo, pridobljeno iz preprostih primerov, za napovedovanje obnašanja kompleksnejših sistemov. Na primer, ko iteriramo vektor s hermitsko matriko, se bo njegova norma (ali skalarni produkt z drugim vektorjem) eksponentno razvijala v času. Eksponent ponavadi določa največja lastna vrednost matrike. Če bi isto pričakovali v nehermitskih sistemih, bi se krepko zmotili. V termodinamski limiti in za splošne vektorje se skalarni produkt še vedno razvija eksponentno v času, toda eksponent je določen z največjo vrednostjo v psevdospektru matrike, tj. spektru rahlo perturbirane matrike. V doktorski disertaciji bomo raziskovali razne fizikalne količine, ki jih propagiramo v času z iteracijami nehermitskih prehodnih matrik. V večini primerov bodo te količine relaksirale ekpsonentno v dveh fazah. V prvi fazi je eksponent enak največji vrednosti v psevdospektru prehodne matrike. Po času, ki skalira sorazmerno z velikostjo sistema, bo eksponent enak največji lastni vrednosti matrike. Čas, ko se neha prva faza, divergira z večanjem sistema, zato v termodinamski limiti spekter prehodne matrike sploh ne določa relaksacije količin. Primeri, ki si jih bomo ogledali, vključujejo prepletenost in korelacije v naključnih kvantnih vezjih in tudi nesimetrično naključno hojo. Kontekst, ki ga analiziramo, je precej splošen, zato pričakujem, da bi lahko koristil številnim fizikalnim področjem. Kadarkoli se bo kdo srečal z iteracijami nehermitske matrike, se lahko ozre na to delo in mu bo predstavljena študija pomagala pri napovedovanju obnašanja sistema.

Keywords:psevdospekter, naključna kvantna vezja, nehermitskost, nenormalna matrika, Markovska veriga, prehodna matrika, prepletenost, korelacije operatorjev

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back