izpis_h1_title_alt

Razpoznavanje človekove aktivnosti s tipali na razvojni plošči Sensortile.box
ID Renar, Jan (Author), ID Rozman, Robert (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,31 MB)
MD5: D9053F74D240F15CD4786A95D01A3AE9

Abstract
Cilj diplomskega dela je implementacija sistema za razpoznavanje človekove aktivnosti z razvojno ploščo Sensortile.box, ki je uporabljena kot nosljiva naprava s strani uporabnika. Sistem sestavlja strojno-programska oprema, ki na razvojni plošči skrbi za zajem podatkov in model nevronske mreže, ki zajete podatke klasificira v realnem času. Merjena sta pospešek in rotacijska hitrost. S pridobljenimi podatki med aktivnostmi različnih oseb so bile naučene različice modelov nevronskih mrež: nevronska mreža z več sloji perceptronov (MLP), konvolucijska nevronska mreža (CNN) in nevronska mreža z dolgim kratkoročnim spominom (LSTM). Prvo učenje in preizkušanje modelov je potekalo z uporabo knjižnice Tensorflow na osebnem računalniku. Opravljena je bila evalvacija delovanja in učinkovitosti izbranih modelov pri razpoznavanju človekove aktivnosti. Preizkus je pokazal, da model nevronske mreže MLP dosega najboljše rezultate glede na uporabljeno metriko uspešnosti (ocena F1). Pri implementaciji naučenih modelov nevronskih mrež na razvojni plošči Sensortile.box je bilo ugotovljeno, da so zaradi njihove velikosti potrebne dodatne prilagoditve, predvsem kvantizacije parametrov. Po teh prilagoditvah je bil opažen rahel padec uspešnosti vseh modelov nevronskih mrež. Model nevronske mreže MLP je edini izpolnil zahtevo po klasifikaciji v realnem času in dosega dobro uspešnost kljub omejitvam vgrajenega sistema na razvojni plošči Sensortile.box.

Language:Slovenian
Keywords:aktivnost, klasifikacija, nevronska mreža, izvajanje v realnem času, vgrajeni sistemi
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-162805 This link opens in a new window
COBISS.SI-ID:214486275 This link opens in a new window
Publication date in RUL:27.09.2024
Views:71
Downloads:81
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Recognition of human activity using sensors on Sensortile.box development board
Abstract:
The aim of this thesis is to implement a human activity recognition system using the Sensortile.box development board, which is used as a wearable device by the user. The system consists of firmware that captures data on the development board and a neural network model that classifies the captured data in real time. Acceleration and rotational velocity are measured. Using the data acquired during various activities by different subjects, several neural network models were trained: the Multi-layer Perceptron Neural Network (MLP), the Convolutional Neural Network (CNN) and the Long Short-Term Memory Neural Network (LSTM). These models were initially trained and tested using the Tensorflow library on a personal computer. An evaluation of the performance and effectiveness of the selected models in human activity recognition was conducted. The test showed that the MLP neural network model achieves the best results according to the performance metric used (F1 score). When implementing the trained neural network models on the Sensortile.box development board, it was found that due to their size, additional adjustments were needed, primarily quantization of parameters. After these adjustments, a slight drop in the performance of all neural network models was observed. The MLP neural network model was the only one that met the real-time classification requirement, achieving good performance despite the limitations of the embedded system on the Sensortile.box development board.

Keywords:activity, classification, neural network, real-time execution, embedded systems

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back