izpis_h1_title_alt

Napovedovanje vrednosti finančnih tokov s spodbujevanim in globokim učenjem
ID Bogataj, Fedja (Author), ID Bosnić, Zoran (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,91 MB)
MD5: 8BBF634EB8379ED6D6514EC83BA32C5E

Abstract
Napovedovanje vrednosti finančnih tokov je eden od najbolj zahtevnih problemov strojnega učenja, saj zgodovinski podatki o gibanju vrednosti vsebujejo veliko šuma in so nestabilni. Trenutni pristopi se osredotočajo na uporabo spodbujevanega učenja in uporabo nevronskih mrež za predvidevanje naslednjih akcij. V tej diplomski nalogi bomo raziskali uporabo povratnih nevronskih mrež za opravljanje teh funkcij in jih med seboj primerjali. Primerjali bomo delovanje nevronske mreže s plastmi LSTM, ki so se že izkazale za zelo obetajoče tako na področju predvidevanja finančnih tokov kot igranja iger, ter nevronske mreže s plastmi GRU, uporaba katerih še ni bila dobro raziskana, in obe primerjali z usmerjeno nevronsko mrežo. Z uporabo povratnih nevronskih mrež želimo bolje zajeti časovne odvisnosti in vzorce v podatkih, prav tako pa nam bo to tudi omogočilo, da za napovedovanje naslednje akcije uporabimo večje število podatkov (iz preteklih časovnih intervalov) za doseganje večje točnosti. Rezultati naših eksperimentov kažejo, da se v obdobju med leti 2019 in 2024 na večini finančnih instrumentov najbolje izkaže agent z usmerjeno nevronsko mrežo, pri finančnih instrumentih z velikimi in nenadnimi spremembami cen pa se najbolje izkaže agent s plastmi GRU.

Language:Slovenian
Keywords:spodbujevano učenje, globoko učenje, povratne nevronske mreže
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-162599 This link opens in a new window
COBISS.SI-ID:214394627 This link opens in a new window
Publication date in RUL:25.09.2024
Views:121
Downloads:321
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Predicting the value of financial flows with reinforcement and deep learning
Abstract:
Predicting the value of financial flows is one of the most challenging machine learning problems, as historical data on value movements contain a lot of noise and are unstable. Current approaches focus on using reinforcement learning and using neural networks to predict the next action. In this thesis, we will explore the use of recurrent neural networks to perform these functions and compare them to each other. We will compare the performance of a neural network with LSTM layers, which have already proven to be very promising both in the field of predicting financial flows and playing games, and a neural network with GRU layers, the use of which has not yet been well explored. By using feed-forward neural networks, we want to better capture temporal dependencies and patterns in the data, and it will also allow us to use a larger amount of data (from past time intervals) to predict the next action to achieve greater accuracy. The results of our experiments show that, in the period between 2019 and 2024, the agent with a feedforward neural network performs best on most financial instruments, while the agent with GRU layers performs best on financial instruments with large and sudden price changes.

Keywords:reinforcement learning, deep learning, recurrent neural networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back