izpis_h1_title_alt

Dokazi Cayleyjeve formule : magistrsko delo
ID Sovdat, Ines (Author), ID Konvalinka, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (703,49 KB)
MD5: D34540FA9F12D449FB2DAC11E48F6071

Abstract
V magistrskem delu obravnavamo Cayleyjevo formulo, ki pravi, da je vseh označenih dreves na $n$ vozliščih $n^{n-2}$. Vsestranskost te formule spoznamo preko raznolikosti njenih dokazov. Spoznamo dokaze, ki temeljijo na bijekciji med množicama z isto kardinalnostjo, kot so Pitmanov, Joyalov in Pruferjev dokaz. Ogledamo si rekurzivne zveze med drevesi, ki temeljijo na indukciji po vozliščih drevesa. Naučimo se, kako lahko procese razvejanja povežemo z naključnimi sprehodi in to uporabimo pri dokazovanju. Predstavimo Laplaceovo matriko in izrek o številu vpetih dreves ter s prijemi iz linearne algebre pokažemo veljavnost Cayleyjeve formule. Spoznamo pa tudi uporabnost eksponentnih rodovnih funkcij za štetje označenih dreves in Lagrangeevo inverzijo.

Language:Slovenian
Keywords:Cayleyjeva formula, označeno drevo, drevo s korenom, rodovne funkcije, proces razvejanja, Laplaceova matrika
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-162402 This link opens in a new window
UDC:519.17
COBISS.SI-ID:208470275 This link opens in a new window
Publication date in RUL:22.09.2024
Views:126
Downloads:22
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Proofs of Cayley's formula
Abstract:
In this thesis we discuss Cayley's formula, which states that there are $n^{n-2}$ labelled trees on $n$ vertices. The versatility of this formula can be seen through the diversity of its proofs. We are introduced to bijection based proofs between sets of the same cardinality, such as Pitman's, Joyal's and Prufer's proof. We get to know recursive tree relations that can be proved by induction on the number of vertices. We learn about links between the branching process and random walks and use them in proofs. Using knowledge of linear algebra as well as introducing the Laplacian matrix and the Matrix-tree theorem we show that Cayley's formula holds. We also present the usability of exponential generating functions for counting labelled trees along with Lagrange's inversion theorem.

Keywords:Cayley's formula, labelled tree, rooted tree, generating functions, branching process, Laplacian matrix

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back