izpis_h1_title_alt

Zaznavanje oblakov na letalskih posnetkih z globokim učenjem : diplomska naloga
ID Bogataj, Jošt (Author), ID Oštir, Krištof (Mentor) More about this mentor... This link opens in a new window, ID Račič, Matej (Comentor)

.pdfPDF - Presentation file, Download (4,81 MB)
MD5: AE9D055DB1D920052C0DC68CB6451292

Abstract
Namen diplomskega dela je z metodami globokega učenja izdelati model, ki bi na letalskih posnetkih samodejno zaznaval oblake. Glavni razlog za nalogo je bil projekt cikličnega laserskega skeniranja Slovenije, kjer se sočasno zajema tudi DOF, zato je trebna obdelati velike količine posnetkov. Z vsako avtomatizacijo se izognemo ročnemu pregledovanju posnetkov za namen izdelave ortofota. V nalogi smo preizkusili različne arhitekture. Na koncu smo se odločili za Faster R-CNN, učenje pa smo izvajali s prosto dostopno knjižnico Detectron2. Model je bil pred učen na slikah iz Microsoftove zbirke COCO. Zaradi variabilnosti terena je bilo pomembno, da je model generaliziran. To smo dosegli z umetno razširitvijo učne množice. Uporabili smo tehnike naključnega zrcaljenja, rotacije, spremembe kontrasta in spremembe svetlosti. Da smo dobili čim boljši model, smo le tega med učenjem sprotno preverjali na validacijski množici in shranjevali vmesne iteracije. Na koncu smo ga preverili še na testni množici, ki vsebuje 90 slik z in brez oblakov.

Language:Slovenian
Keywords:diplomske naloge, gradbeništvo, geodezija, globoko učenje, ortofoto, CLSS, prepoznavanje objektov, Faster R-CNN
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FGG - Faculty of Civil and Geodetic Engineering
Place of publishing:Ljubljana
Publisher:[J. Bogataj]
Year:2024
Number of pages:1 spletni vir (1 datoteka PDF (X, 33 str.))
PID:20.500.12556/RUL-161906-b2aacc26-7e4e-5c07-2181-4300d14cbbee This link opens in a new window
UDC:004.896:528.7/.8(497.4)(043.2)
COBISS.SI-ID:210732547 This link opens in a new window
Publication date in RUL:15.09.2024
Views:308
Downloads:63
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Cloud detection on aerial photography using deep learning : graduation thesis
Abstract:
The thesis aims to train a model that would automatically detect clouds on aerial photographs using deep learning. The main reason for the task was the project of cyclic laser scanning of Slovenia, which includes capturing photographs to create an orthophoto. Because of this it is necessary to process large amounts of images. With any automatization, one avoids manual inspection of images, which is needed to create an orthophoto. In the thesis we tried different architectures. Ultimately, we decided on Faster R-CNN and performed the learning within the open-source Detectron2 library. The model was pretrained on images from Microsoft's COCO collection from 2017. Due to the variability of the terrain the model needed to be generalized. We achieved this by using data augmentation. We used the techniques of flipping, rotation, contrast change and brightness change. To obtain the best possible model, we periodically evaluated it on the validation dataset during learning and saved intermediate iterations. Finally, we ran it on the test set, which contains 90 images with and without clouds.

Keywords:graduation thesis, geodesy, deep learning, orthophoto, CLSS, object detection, Faster R-CNN

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back