izpis_h1_title_alt

Lastne vrednosti grafov deliteljev niča : delo diplomskega seminarja
ID Verbič, Jošt (Author), ID Dolžan, David (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (423,48 KB)
MD5: D00A5B92A6157655F97AE192469B051A

Abstract
V diplomski nalogi spoznamo grafe deliteljev niča. Ti povežejo algebrajske strukture in teorijo grafov na zanimiv in intuitiven način. Tako lahko s študijem enega področja pridemo do uporabnih dognanj na drugem. Graf deliteljev niča $\Gamma(K)$ danega kolobarja $K$ je graf, katerega množica vozlišč je enaka množici neničelnih deliteljev niča kolobarja $K$, elementa kolobarja pa sta v grafu sosednja, če njun produkt enak nič. Za te grafe pokažemo nekaj njihovih pomembnih lastnosti, kot sta povezanost in omejenost njihovega premera. V delu obravnavamo poseben primer grafov deliteljev niča, ko je kolobar dan kot produkt manjših kolobarjev oblike $\mathbb{Z}_{p_i^{t_i}}$, kjer so $p_i$ praštevila in $t_i$ naravna števila. Poseben pomen pri študiju grafov imajo lastne vrednosti njihovih matrik sosednosti. Za zgoraj omenjen tip kolobarjev izračunamo število ničelnih lastnih vrednosti in pokažemo postopek, kako natančno določiti preostale, neničelne lastne vrednosti. Posebej tudi določimo lastne vrednosti grafov $\Gamma(\mathbb{Z}_p\times\mathbb{Z}_p\times\mathbb{Z}_p)$ in $\Gamma(\mathbb{Z}_p\times\mathbb{Z}_p\times\mathbb{Z}_p\times\mathbb{Z}_p)$.

Language:Slovenian
Keywords:grafi deliteljev niča, lastne vrednosti grafov, ničelnost grafov, produkt grafov, lokalni kolobarji
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-161814 This link opens in a new window
UDC:519.17
COBISS.SI-ID:207974403 This link opens in a new window
Publication date in RUL:14.09.2024
Views:115
Downloads:14
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Eigenvalues of zero-divisor graphs
Abstract:
We study zero-divisor graphs and try to bridge the gap between algebra and graph theory. Zero-divisor graph $\Gamma(K)$ is constructed with elements of a given ring $K$. Two non-zero elements are adjacent if their product is equal to zero. First we show some of the properties of zero-divisor graphs, such as that they are always connected and have a bounded diameter. The thesis then focuses on a special case of zero-divisor graphs where the ring is given as a product of smaller rings of the form $\mathbb{Z}_{p_i^{t_i}}$ for some prime numbers $p_i$ and integers $t_i$. We show how to find non-zero eigenvalues of this types of graphs and derive the formula for the number of eigenvalues that are equal to zero. Finally we calculate the the eigenvalues of $\Gamma(\mathbb{Z}_p\times\mathbb{Z}_p\times\mathbb{Z}_p)$ and $\Gamma(\mathbb{Z}_p\times\mathbb{Z}_p\times\mathbb{Z}_p\times\mathbb{Z}_p)$.

Keywords:zero-divisor graphs, graph eigenvalues, graph nullity, graph products, local rings

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back