Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Lastne vrednosti grafov deliteljev niča : delo diplomskega seminarja
ID
Verbič, Jošt
(
Author
),
ID
Dolžan, David
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(423,48 KB)
MD5: D00A5B92A6157655F97AE192469B051A
Image galllery
Abstract
V diplomski nalogi spoznamo grafe deliteljev niča. Ti povežejo algebrajske strukture in teorijo grafov na zanimiv in intuitiven način. Tako lahko s študijem enega področja pridemo do uporabnih dognanj na drugem. Graf deliteljev niča $\Gamma(K)$ danega kolobarja $K$ je graf, katerega množica vozlišč je enaka množici neničelnih deliteljev niča kolobarja $K$, elementa kolobarja pa sta v grafu sosednja, če njun produkt enak nič. Za te grafe pokažemo nekaj njihovih pomembnih lastnosti, kot sta povezanost in omejenost njihovega premera. V delu obravnavamo poseben primer grafov deliteljev niča, ko je kolobar dan kot produkt manjših kolobarjev oblike $\mathbb{Z}_{p_i^{t_i}}$, kjer so $p_i$ praštevila in $t_i$ naravna števila. Poseben pomen pri študiju grafov imajo lastne vrednosti njihovih matrik sosednosti. Za zgoraj omenjen tip kolobarjev izračunamo število ničelnih lastnih vrednosti in pokažemo postopek, kako natančno določiti preostale, neničelne lastne vrednosti. Posebej tudi določimo lastne vrednosti grafov $\Gamma(\mathbb{Z}_p\times\mathbb{Z}_p\times\mathbb{Z}_p)$ in $\Gamma(\mathbb{Z}_p\times\mathbb{Z}_p\times\mathbb{Z}_p\times\mathbb{Z}_p)$.
Language:
Slovenian
Keywords:
grafi deliteljev niča
,
lastne vrednosti grafov
,
ničelnost grafov
,
produkt grafov
,
lokalni kolobarji
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2024
PID:
20.500.12556/RUL-161814
UDC:
519.17
COBISS.SI-ID:
207974403
Publication date in RUL:
14.09.2024
Views:
115
Downloads:
14
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Eigenvalues of zero-divisor graphs
Abstract:
We study zero-divisor graphs and try to bridge the gap between algebra and graph theory. Zero-divisor graph $\Gamma(K)$ is constructed with elements of a given ring $K$. Two non-zero elements are adjacent if their product is equal to zero. First we show some of the properties of zero-divisor graphs, such as that they are always connected and have a bounded diameter. The thesis then focuses on a special case of zero-divisor graphs where the ring is given as a product of smaller rings of the form $\mathbb{Z}_{p_i^{t_i}}$ for some prime numbers $p_i$ and integers $t_i$. We show how to find non-zero eigenvalues of this types of graphs and derive the formula for the number of eigenvalues that are equal to zero. Finally we calculate the the eigenvalues of $\Gamma(\mathbb{Z}_p\times\mathbb{Z}_p\times\mathbb{Z}_p)$ and $\Gamma(\mathbb{Z}_p\times\mathbb{Z}_p\times\mathbb{Z}_p\times\mathbb{Z}_p)$.
Keywords:
zero-divisor graphs
,
graph eigenvalues
,
graph nullity
,
graph products
,
local rings
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back