izpis_h1_title_alt

Prilagoditev podatkovnih struktur za učinkovite dinamične intervalne poizvedbe na več dimenzij
ID LUCI, ALJAŽ (Author), ID Fürst, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (522,52 KB)
MD5: F08CF605F1ECCC1F96C262A32DCD1AE7

Abstract
V diplomskem delu se osredotočamo na problem dinamične intervalne poizvedbe in ga prilagodimo za več dimenzij. Predstavimo podatkovni strukturi segmentno drevo in Fenwickovo drevo, ki omogočata reševanje problema v logaritemskem času. Predstavimo lastnosti funkcij, ki jih lahko uporabimo s strukturama, in pokažemo, da morajo biti asociativne in da morajo imeti nevtralen element. Za Fenwickovo drevo potrebuje funkcija še obratno operacijo. Pri prilagoditvi na več dimenzij se izkaže, da je segmentno drevo lahko element segmentnega drevesa. S pomočjo te lastnosti lahko rešujemo problem v več dimenzijah. Enako se da narediti tudi za Fenwickovo drevo. Merili smo čas izvajanja lastne implementacije segmentnega drevesa in Fenwickovega drevesa v Javi za poizvedovanje in posodabljanje in smo ga primerjali s časom delovanja dveh naivnih metod. Čas smo merili tudi za dvodimenzionalni in tridimenzionalni problem. Obe drevesi se izkažeta za učinkoviti za posodabljanje in poizvedbe v eni ali več dimenzijah, je pa Fenwickovo drevo nekoliko hitrejše.

Language:Slovenian
Keywords:segmentno drevo, Fenwickovo drevo, intervalne poizvedbe
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161751 This link opens in a new window
COBISS.SI-ID:213581315 This link opens in a new window
Publication date in RUL:13.09.2024
Views:104
Downloads:26
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Adapting data structures for efficient dynamic interval queries to multiple dimensions
Abstract:
The focus of the thesis is adapting the problem of dynamic range querying to multiple dimensions. We explain the already existing solutions, namely the segment tree and the Fenwick tree, which can do range queries and point updates in logarithmic time. After that we show that they can be used for any associative function, which has an identity element. For the Fenwick tree, the function also needs to have an inverse. We then explain that a segment tree can be an element inside of a segment tree and use this property to solve the problem of dynamic range querying in multiple dimensions. The same is done for the Fenwick tree. We conclude with timing the updating and querying operations on the segment and Fenwick tree, as well as two naïve solutions in one, two and three dimensions, and show that both structures are efficient in updating and querying, but the Fenwick tree performs better.

Keywords:segment tree, Fenwick tree, interval query

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back