izpis_h1_title_alt

Navidezno okolje za merjenje gibanja roke s pomočjo inercijskih merilnih enot
ID Jurak, Nal (Author), ID Podobnik, Janez (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,47 MB)
MD5: 6DE8E99E585362BBB079BBDAAE33C104

Abstract
V tej diplomski nalogi smo se osredotočil na problem merjenja in vizualizacije gibanja roke, kar je ključnega pomena na različnih področjih, kot so rehabilitacija, analiza športne uspešnosti in ergonomske ocene. Tradicionalno uporabljene metode, kot so optični sistemi za zajem gibanja, so pogosto drage, zapletene in omejene na kontrolirana okolja, kar oteži njihovo uporabo v širšem kontekstu. Inercijske merilne enote (IMU) ponujajo alternativno rešitev zaradi svoje dostopnosti, prenosljivosti, enostavne uporabe in nizke cene. Sistem združuje tri IMU senzorje, nameščene na podlaket, nadlaket in trup, ki preko USB sprejemnika pošiljajo podatke na računalnik. Podatki se nato obdelajo z algoritmi UltraSimple in QuaternionIntegration za natančno sledenje gibanja v realnem času. Algoritma UltraSimple in QuaternionIntegration omogočata združevanje podatkov iz pospeškometrov, žiroskopov in magnetometrov za natančno izračunavanje orientacije in gibanja. Za merjenje orientacije uporabljamo kvaternione, ki omogočajo stabilno in natančno predstavitev rotacij brez težav, ki se pojavijo pri uporabi Eulerjevih kotov. S kombinacijo podatkov iz treh senzorjev lahko sistem zajame celovite podatke o gibanju roke, kar omogoča vizualizacijo gibanja v realnem času z uporabo programske opreme Unity. Za validacijo podatkov in natančno analizo uporabljam Matlab, kjer se podatki prikažejo v obliki 3D grafov. Glavne ugotovitve raziskave so pokazale, da je kombinacija algoritmov UltraSimple in QuaternionIntegration učinkovita za sledenje kompleksnih rotacijskih gibanj rok. Validacija podatkov, izvedena v Matlabu, je potrdila natančnost in zanesljivost sistema, kar omogoča njegovo uporabo v različnih aplikacijah, kot so rehabilitacija, analiza športne uspešnosti in ergonomske ocene. Rezultati so pokazali, da sistem omogoča natančno in robustno sledenje gibanja roke, kar je ključnega pomena za zagotavljanje zanesljivih podatkov v različnih aplikacijah. Kljub vsem prednostim IMU ostajajo izzivi pri zagotavljanju natančnosti in zanesljivosti podatkov, še posebej med dolgotrajno uporabo. Napake se lahko kopičijo, občutljivost na zunanje dejavnike, kot so magnetna polja in tresljaji, pa lahko negativno vpliva na natančnost meritev. Zato smo se osredotočili na ustrezno uporabo algoritmov za zajem in vizualizacijo podatkov ter pravilno kalibracijo merilnikov, da bi zmanjšali napake in izboljšali natančnost sistema. Rezultati prispevajo k izboljšanju trenutnega stanja na področju merjenja in vizualizacije gibanja rok z uporabo IMU senzorjev. Uporabljen sistem je cenovno dostopen, prenosljiv in enostaven za uporabo, kar omogoča njegovo širšo uporabo v praksi. Možne so nadaljnje raziskave za izboljšanje natančnosti in zanesljivosti sistema, predvsem z uporabo naprednih metod strojnega učenja za zaznavanje in kompenzacijo napak ter integracijo dodatnih senzorjev za bolj celovito spremljanje gibanja

Language:Slovenian
Keywords:Inercialne merilne enote, IMU, merjenje gibanja, navidezno okolje, algoritmi za sledenje gibanja
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-161738 This link opens in a new window
COBISS.SI-ID:207450115 This link opens in a new window
Publication date in RUL:13.09.2024
Views:156
Downloads:45
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:A virtual environment for measuring arm movement using inertial measurement units
Abstract:
In this thesis, we focused on the problem of measuring and visualizing arm movement, which is crucial in various fields such as rehabilitation, sports performance analysis, and ergonomic assessments. Traditional methods, including optical motion capture systems, are often expensive, complex, and limited to controlled environments, making their broader use challenging. Inertial Measurement Units (IMUs) offer an alternative solution due to their accessibility, portability, ease of use, and low cost. The system integrates three IMU sensors placed on the forearm, upper arm, and torso, which send data to a computer via a USB receiver. The data is then processed using the UltraSimple and QuaternionIntegration algorithms for precise real-time motion tracking. These algorithms combine data from accelerometers, gyroscopes, and magnetometers to accurately calculate orientation and movement. For measuring orientation, we use quaternions, which provide a stable and accurate representation of rotations without the issues encountered with Euler angles. By combining data from the three sensors, the system captures comprehensive motion data, allowing real-time visualization of arm movements using Unity software. For data validation and precise analysis, I use Matlab, where the data is displayed in 3D graphs. The main findings of the research show that the combination of UltraSimple and QuaternionIntegration algorithms is effective for tracking complex rotational arm movements. Data validation performed in Matlab confirmed the accuracy and reliability of the system, enabling its use in various applications such as rehabilitation, sports performance analysis, and ergonomic assessments. Results have shown that the system allows for precise and robust tracking of arm movement, which is essential for providing reliable data in various applications. Despite all the advantages of IMUs, challenges remain in ensuring data accuracy and reliability, especially during prolonged use. Errors can accumulate, and sensitivity to external factors such as magnetic fields and vibrations can negatively impact measurement accuracy. Therefore, I focused on the proper use of algorithms for data capture and visualization and the correct calibration of sensors to reduce errors and improve system accuracy. Gathered results contribute to the improvement of the current state in the field of measuring and visualizing arm movements using IMU sensors. The system we used is affordable, portable, and easy to use, allowing for its broader practical application. Further research is possible to improve the accuracy and reliability of the system, especially through the use of advanced machine learning methods for error detection and compensation, and the integration of additional sensors for more comprehensive motion tracking.

Keywords:Inertial Measurement Units, IMU, motion tracking, virtual environment, motion tracking algorithms

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back