izpis_h1_title_alt

Konceptualni zemljevidi za priporočilni sistem aktivnosti študentov
ID Otašević, Jovana (Author), ID Košir, Andrej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,47 MB)
MD5: 1CD47FAF17CDE74DDF1776C3D080933F

Abstract
Diplomsko delo obravnava izboljšave priporočilnih sistemov za aktivnosti študentov z uporabo avtomatsko generiranih konceptualnih zemljevidov. Osredotoča se na razvoj in analizo sistema generiranja konceptualnih zemljevidov kot osnove priporočilnega sistema za aktivnosti študentov. Uvodna faza raziskave se posveča optimizaciji učnega procesa, vlogi priporočilnih sistemov in uporabnosti konceptualnih zemljevidov. Namen diplomskega dela je raziskati, kako lahko avtomatsko generirani konceptualni zemljevidi dosegajo primerljivo dobre rezultate kot ročno generirani. To smo poskusili določiti z ovrednotenjem teh konceptualnih zemljevidov. Raziskava vključuje uporabo algoritmov za obdelavo naravnega jezika za generiranje ključnih besed in ustvarjanje konceptualnih zemljevidov iz besedilnih podatkov. Analizirani so bili testni podatki za obe vrsti zemljevidov, tako ročno kot avtomatsko generirane različice. Za primerjavo kakovosti ročno in avtomatsko generiranih zemljevidov smo uporabili statistične teste značilnosti, ki temeljijo na povratnih informacijah študentov. Rezultati raziskave so pokazali, da avtomatsko generirani konceptualni zemljevidi lahko uspešno nadomestijo ročno ustvarjene različice, kar potrjuje njihovo uporabnost v priporočilnih sistemih. Anketni rezultati med študenti so pokazali, da se avtomatsko generirani zemljevidi dobro ujemajo z njihovimi potrebami, pri čemer razlike med avtomatsko in ročno generiranimi zemljevidi niso bile zaznane. V zaključku raziskave je bilo ugotovljeno, da je potreben nadaljnji razvoj algoritmov, predvsem pri filtriranju nepomembnih besed, ter širitev raziskave z večjim obsegom podatkov in večjo skupino ocenjevalcev.

Language:Slovenian
Keywords:avtomatsko generiranje, konceptualni zemljevidi, priporočilni sistem, obdelava naravnih jezikov
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-161732 This link opens in a new window
COBISS.SI-ID:207461379 This link opens in a new window
Publication date in RUL:13.09.2024
Views:142
Downloads:933
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Concept maps for a student activity recommendation system
Abstract:
This thesis addresses improvements in recommendation systems for student activities through the use of automatically generated concept maps. It focuses on the development and analysis of a concept map generation system as a basis for a recommendation system for student activities. The initial phase of the research is dedicated to optimizing the learning process, the role of recommendation systems, and the utility of concept maps. The aim of the thesis is to explore how automatically generated concept maps can achieve results comparable to manually generated ones. This was determined by evaluating these concept maps. The research includes the use of natural language processing algorithms to generate keywords and create concept maps from textual data. Test data for both types of maps, manually and automatically generated versions, were analyzed. Statistical significance tests, based on student feedback, were used to compare the quality of manually and automatically generated maps. The research results showed that automatically generated concept maps can successfully replace manually created versions, confirming their usefulness in recommendation systems. Survey results among students indicated that automatically generated maps align well with their needs, with no noticeable differences between automatically and manually generated maps. The conclusion of the research found that further algorithm development is necessary, particularly for filtering irrelevant words, along with expanding the research with a larger dataset and a more extensive group of evaluators.

Keywords:automatic generation, conceptual maps, recommendation systems, natural language processing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back