izpis_h1_title_alt

Konformno napovedovanje zanesljivosti ocene vrednosti : magistrsko delo
ID Babnik, Eva (Author), ID Grošelj, Jan (Mentor) More about this mentor... This link opens in a new window, ID Kaluža, Boštjan (Comentor)

.pdfPDF - Presentation file. The content of the document unavailable until 11.09.2025.
MD5: 65C8D24FD5B8362421B8D908FCA7E1F7

Abstract
V magistrskem delu raziščemo konformno napovedovanje vrednosti, pri čemer se osredotočimo na ocenjevanje zanesljivosti ocen vrednosti nepremičnin v Sloveniji, napovedanih s pomočjo neparametičnih metod strojnega učenja. Od tradicionalnih metod za kvantificiranje negotovosti se konformna napoved razlikuje v tem, da zagotavlja robustno statistično zanesljivost v končnih vzorcih na način, ki je neodvisen od porazdelitve vzorcev. Poleg tega so osnovni koncepti široko uporabni, enostavni za implementacijo in delujejo neodvisno od specifičnih modelov strojnega učenja. Na ta način konformna napoved omogoča kalibracijo modelov tako, da namesto točkovnih napovedi proizvaja intervale, ki so prilagojeni negotovosti modela in vnaprej določeni največji dovoljeni stopnji neuspeha. V delu opišemo in implementiramo različne metode konformne napovedi ter raziščemo njihovo učinkovitost pri določanju zanesljivosti ocen vrednosti nepremičnin, ki jih napovemo z uporabo naključnih gozdov. Ugotovimo, da lahko z opisanimi metodami proizvedemo učinkovite napovedne intervale z zagotovljeno stopnjo pokritosti. Ugotovimo tudi, da lahko s pomočjo napovednih intervalov pri nekaterih različicah konformnega napovedovanja kot izhod vrnemo tudi razred zaupanja za vsako napoved, ki ustreza smernicam relevantnih regulativnih teles.

Language:Slovenian
Keywords:vrednotenje nepremičnin, konformno napovedovanje, naključni gozdovi, kvantilna regresija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-161685 This link opens in a new window
COBISS.SI-ID:207130883 This link opens in a new window
Publication date in RUL:13.09.2024
Views:155
Downloads:0
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Conformal prediction for assessing the reliability of value estimation
Abstract:
In this master’s thesis, we explore conformal prediction of values, focusing on assessing the reliability of property value estimates in Slovenia, predicted using nonparametric machine learning methods. Unlike traditional methods for quantifying uncertainty, conformal prediction offers robust statistical guarantees in finite samples in a distribution-free manner. Additionally, the basic concepts are broadly applicable, simple to implement and operate independently of specific machine learning models. In this way, instead of using models that provide point estimates, conformal prediction allows their calibration so that they produce intervals dependent on the model’s uncertainty and a predetermined maximum allowable miscoverage rate. In the thesis, we describe and implement various methods of conformal prediction and explore their effectiveness in determining the reliability of real estate value estimates, predicted by random forests. We find that the described methods can produce efficient prediction intervals with a guaranteed coverage rate. We also find that using prediction intervals, some versions of conformal prediction can return a confidence level for each prediction as output, which aligns with the guidelines of relevant regulatory authorities.

Keywords:property valuation, conformal prediction, random forests, quantile regression

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back