izpis_h1_title_alt

Uporaba metod strojnega učenja za samodejno razpoznavanje akordov v glasbi
ID Škerl, Jaka (Author), ID Dobrišek, Simon (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,00 MB)
MD5: 0D0453A91003D95DCD6F9F66F730FDFF

Abstract
V diplomski nalogi je obravnavana uporaba metod strojnega učenja za razpoznavanje glasbenih akordov iz zvočnih signalov. Osredotoča se na razvoj in uporabo konvolucijskih nevronskih omrežij (CNN) in metode podpornih vektorjev (SVM) za analizo in klasifikacijo akordov. Problem razpoznavanja akordov je predstavljen v kontekstu obdelave zvočnih signalov in luščenja značilk, kot so spektrogrami in kromagrami. V nalogi so podrobno predstavljene arhitekture CNN, ki so bile uporabljene za razpoznavanje vzorcev v spektrogramih in metode SVM, ki so bile prilagojene za delo z zvočnimi značilkami. Primerjava učinkovitosti pristopov je izvedena na podlagi eksperimentov z različnimi konfiguracijami in parametri. Rezultati kažejo, da CNN modeli zagotavljajo visoko stopnjo natančnosti pri razpoznavanju akordov, medtem ko SVM ponujajo hitrejšo izvedbo z nekoliko nižjo natančnostjo. Analiza rezultatov razkriva prednosti in slabosti posameznih pristopov ter ponuja vpogled v možnosti nadaljnjega razvoja v smeri izboljšanja hitrosti in natančnosti. Ključni zaključki vključujejo potrditev, da je kombinacija strojnega učenja in znanja iz teorije glasbe učinkovita pri razpoznavanju akordov in da je za nadaljnji napredek na tem področju ključnega pomena nadaljnje raziskovanje in integracija naprednejših metod strojnega učenja.

Language:Slovenian
Keywords:strojno učenje, razpoznavanje akordov, konvolucijska nevronska omrežja, metoda podpornih vektorjev, obdelava zvočnih signalov, spektrogram, kromagram
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-161599 This link opens in a new window
COBISS.SI-ID:208540675 This link opens in a new window
Publication date in RUL:12.09.2024
Views:163
Downloads:39
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Using Machine Learning Methods for Automatic Chord Recognition in Music
Abstract:
The thesis addresses the use of machine learning methods for recognizing musical chords from audio signals. It focuses on the development and implementation of Convolutional Neural Networks (CNN) and Support Vector Machines (SVM) for analyzing and classifying chords. The problem of chord recognition is presented in the context of audio signal processing and feature extraction, such as spectrograms and chromagrams. The thesis provides a detailed presentation of the CNN architectures used for pattern recognition in spectrograms and the SVM methods adapted to work with audio features. The effectiveness of these approaches is compared based on experiments with different configurations and parameters. The results show that CNN models provide a high level of accuracy in chord recognition, while SVMs offer faster execution with slightly lower accuracy. The analysis of the results reveals the advantages and disadvantages of each approach and provides insight into possibilities for further development aimed at improving speed and accuracy. Key conclusions include the confirmation that the combination of machine learning and knowledge from music theory is effective in chord recognition, and that further progress in this field requires ongoing research and the integration of advanced machine learning methods.

Keywords:machine learning, chord recognition, convolutional neural networks, support vector machines, audio signal processing, spectrogram, chromagram

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back