izpis_h1_title_alt

Optimizacija cene električne energije pametne hiše z uporabo spodbujevalnega učenja
ID SIVEC, ANDRAŽ (Author), ID Meža, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,58 MB)
MD5: 34A477E2B18307DA89089FD224A58B2F

Abstract
Zaradi prehoda v brezogljično družbo močno raste število malih sončnih elektrarn, ki jih nameščajo gospodinjstva. Zaradi nihanja v proizvodnji sončnih elektrarn se pogosto nameščajo tudi hranilniki energije, da se generirana energija lahko porabi tudi v času, ko sončna elektrarna ne deluje. Za razliko od klasičnih hiš, ki so samo porabniki, ima hiša s sončnimi paneli in hranilnikom energije mnogo več nadzora nad tem, kdaj kupuje energijo in kdaj odvečno energijo prodaja. To bo posebej pomembno v prihodnje, ko bo zaradi porasta sončnih elektrarn cena energije v času dneva, ko proizvajajo največ, predvidoma dodatno padla. V magistrski nalogi sem zgradil digitalni dvojček hiše z nameščenimi sončnimi paneli in hranilnikom energije. Dvojčka sem uporabil kot okolje za gradnjo agenta s spodbujevalnim učenjem. Uporabil sem 2 pristopa gradnje agenta, njune rezultate in zahtevnost delovanja sem primerjal med sabo in razložil prednosti in slabosti posameznega modela.

Language:Slovenian
Keywords:: strojno učenje, spodbujevalno učenje, pametna hiša, trgovanje z energijo, sončna elektrarna, baterija, zeleni prehod, elektrifikacija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-161569 This link opens in a new window
COBISS.SI-ID:215614723 This link opens in a new window
Publication date in RUL:12.09.2024
Views:162
Downloads:47
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Optimizing the electricity price of a smart home using reinforcement learning
Abstract:
Due to the transition to a carbon-free society, the number of small solar power plants installed by households is growing rapidly. Due to fluctuations in the production of solar power plants, energy storage systems are often installed so that the generated energy can also be used when the solar power plant is not operating. Unlike traditional houses, which are only consumers, a house with solar panels and an energy storage system has much more control over when it buys energy and when it sells excess energy. This will be especially important in the future, as the price of energy is expected to further decrease during the day when solar power plants produce the most. In my master’s thesis, I built a digital twin of a house with installed solar panels and an energy storage system. Using this twin, I developed two principles of reinforcement learning (RL) operation. I compared their results and operational complexity and explained the advantages and disadvantages of each model.

Keywords:machine learning, reinforcement learning, smart home, energy trading, solar power plant, battery, green transition, electrification

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back