izpis_h1_title_alt

Avtomatska segmentacija lezij na medicinskih slikah
ID Anđelković, Stefan (Author), ID Skočaj, Danijel (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (833,37 KB)
MD5: A1F851FACF4884EAAE49B22FE644080A

Abstract
V diplomskem delu je opisan postopek segmentacije lezij na medicinskih slikah z uporabo globokega učenja. Predstavljene so različne metode, ki se uporabljajo za segmentacijo, začenši z najbolj znano in priljubljeno metodo U-Net. Nato je predstavljena izboljšana različica, U-Net++, in na koncu bolj sodobna metoda SegFormer, ki temelji na arhitekturi Transformer. Preizkusili smo segmentacijo treh vrst slik: navadne PET slike, CT slike in kombinacijo PET in CT slik ter prikazali razliko v zahtevnosti segmentacije teh različnih tipov slik. Naši eksperimenti kažejo, da je segmentacija PET slik najlažja, saj smo pri njih dosegli najboljše rezultate. CT slike so se izkazale za precej bolj zahtevne za segmentacijo, medtem ko kombinacija PET in CT slik ni prinesla bistvenega izboljšanja natančnosti.

Language:Slovenian
Keywords:segmentacija, PET, CT, analiza medicinskih slik
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161558 This link opens in a new window
COBISS.SI-ID:213235203 This link opens in a new window
Publication date in RUL:12.09.2024
Views:150
Downloads:26
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic lesion segmentation in medical images
Abstract:
The thesis describes the process of lesion segmentation in medical images using deep learning. Different methods used for segmentation are presented, starting with the most well-known and popular U-Net method. Then an improved version, U-Net++, is presented, and finally the more modern SegFormer method based on the Transformer architecture. We have tested the segmentation of three types of images: a plain PET image, a CT image and a combination of PET and CT images and show the difference in segmentation complexity of these different types of images. Our experiments show that PET images are the easiest to segment, with the best results. CT images proved to be much more challenging to segment, while the combination of PET and CT images did not yield a significant improvement.

Keywords:segmentation, PET, CT, medical image analysis

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back