izpis_h1_title_alt

Osnovni izrek algebre : magistrsko delo
ID Hanžek Šušteršič, Iza (Author), ID Malnič, Aleksander (Mentor) More about this mentor... This link opens in a new window, ID Boc Thaler, Luka (Comentor)

.pdfPDF - Presentation file, Download (887,54 KB)
MD5: A93FEBD9573A2F6A64BE59427F3E214C

Abstract
Osnovni izrek algebre pravi, da ima vsak nekonstanten polinom s kompleksnimi koeficienti vsaj eno kompleksno ničlo. Kljub svojemu imenu se s tem izrekom ponavadi srečamo pri analizi in ne pri algebri. Razlog je v tem, da so do nedavnega vsi dokazi temeljili na konceptih in metodah iz kompleksne analize ali pa topologije. Klasično formulacijo osnovnega izreka algebre je mogoče preformulirati na več načinov. Z nekaterimi se srečamo v začetnih poglavjih. V osrednjem delu magistrske naloge predstavimo dokaz, ki je večinoma algebraičen, hkrati pa ne zahteva kaj več kot le poznavanje linearnih operatorjev in lastnih vektorjev. Ta dokaz ni prav znan in je novejšega datuma. Predstavimo tudi klasične dokaze s pomočjo osnovnih pojmov analize (kompaktnost, zveznost) kot tudi z zahtevnejšimi orodji iz kompleksne analize (Liouvillov izrek, Cauchyjeva integralska formula) ter en dokaz s topološkega področja. Delo sklenemo s skico prvega dokaza C. F. Gaussa in njegovo novejšo različico.

Language:Slovenian
Keywords:Algebra, Polinomi, osnovni izrek algebre, polinom, ničle polinoma, zveznost, linearni operator, lastni vektor
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Place of publishing:Ljubljana
Publisher:I. Hanžek Šušteršič
Year:2024
Number of pages:58 str.
PID:20.500.12556/RUL-161531 This link opens in a new window
UDC:512(043.2)
COBISS.SI-ID:207610627 This link opens in a new window
Publication date in RUL:12.09.2024
Views:138
Downloads:29
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Fundamental theorem of algebra
Abstract:
The Fundamental Theorem of Algebra states that every nonconstant polynomial with complex coefficients has at least one complex root. Despite its name, this theorem is usually encountered in analysis rather than algebra. The reason is that, until recently, the techniques used in its proof were found almost exclusively in complex analysis or topology. The classical formulation of the basic theorem of algebra can be reformulated in several ways, some of which are encountered in the opening chapters. In the central part of the master's thesis, we present a proof that is mostly algebraic, but at the same time does not require anything more than knowledge of linear operators and eigenvectors. This proof is not well known and is of recent date. We also present classical proofs with the help of basic concepts of analysis (compactness, continuity) as well as with more sophisticated tools from complex analysis (Liouville's theorem, Cauchy's integral formula), and one topological proof. We conclude the work with a sketch of C. F. Gauss's first proof and its newer version.

Keywords:Fundamental Theorem of Algebra, polynomial, zeros of a polynomial, continuity, linear operator, eigenvector

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back