izpis_h1_title_alt

Uporaba grup v sinhronizaciji : delo diplomskega seminarja
ID Žnidaršič, Patrik (Author), ID Kudryavtseva, Ganna (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (366,18 KB)
MD5: F4EFD20E66C5CD57C789D5C0594C13B7

Abstract
Končni avtomat sinhronizira, če obstaja beseda, ki slika poljubno začetno stanje v fiksno končno stanje. V diplomskem delu definiramo hierarhijo lastnosti permutacijskih grup, povezanih s sinhronizacijo, in obravnavamo povezave med njimi. S pomočjo O’Nan-Scottove klasifikacije primitivnih grup pokažemo, da so vse sinhronizabilne grupe, ki niso skoraj enostavne, tudi ločevalne. Poleg tega podamo mejo za dolžino najkrajše ponastavitvene besede za avtomate, katerih obrnljivi prehodi tvorijo razširjajočo grupo, in mejo uporabimo za dokaz Pinovega izreka o dolžini najkrajše ponastavitvene besede avtomata s praštevilsko mnogo stanji ter cikličnim prehodom.

Language:Slovenian
Keywords:Černýjeva domneva, ponastavitvena beseda, permutacijska grupa, primitivna grupa, O’Nan-Scottov izrek, sinhronizabilna grupa, ločevalna grupa, razširjajoča grupa
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-161528 This link opens in a new window
UDC:512
COBISS.SI-ID:207802371 This link opens in a new window
Publication date in RUL:12.09.2024
Views:127
Downloads:15
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Use of groups in synchronization
Abstract:
A finite automaton is synchronizing if it permits a reset word, i.e. if there exists a sequence of transitions which maps any state to a predetermined fixed state. In this work we define a hierarchy of permutation group properties related to synchronization, and consider the links between them. Referencing the O’Nan-Scott classification of primitive groups, we prove that all synchronizing groups, which are not almost simple, are also separating. Additionally, we establish an upper bound for the length of the shortest reset word in an automaton whose invertible transitions form a spreading group, and use this bound to prove Pin’s theorem concerning the reset words of automata with a prime number of states and a cyclic transition.

Keywords:Černý conjecture, reset word, permutation group, primitive group, O’Nan-Scott theorem, synchronizing group, separating group, spreading group

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back