izpis_h1_title_alt

Igra policaja in roparja : delo diplomskega seminarja
ID Gyergyek, Miha (Author), ID Iršič, Vesna (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (453,80 KB)
MD5: 6E27854CECD3874F6298310405BC900B

Abstract
Obravnavamo igro med dvema igralcema na povezanem grafu. Prvi igralec je policaj in poskuša ujeti drugega igralca, ki predstavlja roparja. Med vsako potezo se igralca lahko premakneta v sosednje vozlišče. Če sta v neki potezi igralca v istem vozlišču, je policaj roparja ujel in zmagal, če pa roparja ne more ujeti v končno mnogo potezah, je zmagal ropar. Grafom, na katerih policaj vedno zmaga, pravimo policijski, tistim, na katerih pa vedno zmaga ropar, pravimo roparski. Karakteriziramo policijske in roparske grafe in opišemo zmagovalno strategijo za policaja. Na policijskih grafih označimo s časom lovljenja najmanjši indeks poteze, v kateri policaj zagotovo zmaga. Najdemo zgornjo mejo za čas lovljenja v splošnih policijskih grafih in dokažemo, da je to najboljša zgornja meja. Čas lovljenja natančneje omejimo navzgor še za nekatere družine grafov. Problem časa lovljenja posplošimo na igro z enim policajem in več roparji. Najdemo zgornjo mejo in dokažemo, da je najboljša za tri roparje. Poiščemo zgornjo mejo za nekatere družine grafov in za drevesa dokažemo, da je najboljša.

Language:Slovenian
Keywords:igra policaja in roparja, poteza, premik, zmagovalna strategija, policijski graf, roparski graf, retrakt, senčna strategija, past, razgradljiv graf, policijska urejenost, čas lovljenja, 2-razgradljiv graf
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-161527 This link opens in a new window
UDC:519.17
COBISS.SI-ID:207778563 This link opens in a new window
Publication date in RUL:12.09.2024
Views:218
Downloads:45
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The game of cop and robber
Abstract:
We consider a game between two players on a connected graph. The first player is the cop and tries to catch the second player, who is the robber. In each round, the players can move to an adjacent vertex. If in any move the players are on the same vertex, the cop captures the robber and wins. If the robber cannot be captured in a finite number of moves, the robber wins. Graphs on which the cop always wins are called cop-win graphs, while those on which the robber always wins are called robber-win graphs. We characterize cop-win and robber-win graphs and describe a winning strategy for the cop. On cop-win graphs, we define the capture time as the smallest index of the round in which the cop is guaranteed to win. We find an upper bound for the capture time in general cop-win graphs and prove that it is the best upper bound. We also provide a better upper bound for the capture time for some families of graphs. We generalize the capture time problem to a game with one cop and multiple robbers. We find an upper bound and prove it to be the best for three robbers. We also find an upper bound for some families of graphs and prove it to be the best for trees.

Keywords:the game of cop and robber, round, move, winning strategy, cop-win graph, robber-win graph, retract, shadow strategy, trap, dismantlable graph, cop-win ordering, capture time, 2-dismantlable graph

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back