Details

Sistem prepoznavanja in ločevanja odpadkov na osnovi globokega učenja z uporabo mehke robotike
ID Čampelj, Matej (Author), ID Vrabič, Rok (Mentor) More about this mentor... This link opens in a new window, ID Brojan, Miha (Comentor)

.pdfPDF - Presentation file, Download (2,03 MB)
MD5: D98697A815422BF1907E9653855B69F1

Abstract
Največji problem pri sortiranju smeti je prepoznavanje in klasifikacija smeti, ki je lahko direktna glede na fizikalne lastnosti ali pa indirektna s kamero. Pri slednji se po navadi uporabljajo nevronske mreže, naučene na pripravljeni učni množici za prepoznavanje objektov na sliki. V nalogi smo natrenirali algoritem YOLO na javno dostopni učni množici z imenom TACO. Za namen testiranja smo naredili testno robotsko celico, tako da smo izdelali mehko odrivalo in ga namestili na sodelovalnega robota Fanuc CR-7iA/L ter razvili spletno aplikacijo za sledenje in upravljanje sortiranja.

Language:Slovenian
Keywords:globoko učenje, prepoznavanje objektov, YOLO, TACO, mehka robotika, sodelovalni roboti
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2024
Number of pages:XX, 59 str.
PID:20.500.12556/RUL-161421 This link opens in a new window
UDC:007.52:681.52:628.4(043.2)
COBISS.SI-ID:218803715 This link opens in a new window
Publication date in RUL:11.09.2024
Views:290
Downloads:100
Metadata:XML DC-XML DC-RDF
:
ČAMPELJ, Matej, 2024, Sistem prepoznavanja in ločevanja odpadkov na osnovi globokega učenja z uporabo mehke robotike [online]. Master’s thesis. [Accessed 11 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=161421
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Deep learning-based trash recognition and sorting system using soft robotics
Abstract:
The biggest challenge in waste sorting is the recognition and classification of waste, which can be done either directly, based on physical properties, or indirectly, using a camera. The latter usually involves the use of neural networks trained on a prepared training set to recognize objects in the image. We trained the YOLO algorithm on a publicly available dataset called TACO. For testing purposes, we created a test robotic cell by developing a soft pusher, mounting it on the collaborative robot Fanuc CR7iA/L and developed a web application for tracking and managing the sorting process.

Keywords:deep learning, object recognition, YOLO, TACO, soft robotics, collaborative robots

Similar documents

Similar works from RUL:
  1. Children’s folk music in second age in kindergarten
  2. Interpretation Oton Župančič's poems in preschool
  3. Discussing and recreating selected folk songs from Štrekelj's collection Slovenian folk songs in the third grade
  4. Discussion about folk and authorial songs in preschool
  5. Dealing with problem topics in preschool period: Babette Cole
Similar works from other Slovenian collections:
  1. FOLK MUSICAL HERITAGE IN PREKMURJE KINDERGARTENS
  2. Humour in the anthologies Encibenci na kamenci
  3. Otroška ljudska pesem in glasbila pri glasbenih dejavnostih v kombiniranem oddelku otrok, starih od enega do šest let
  4. Children folk songs from the Štrekelj's legacy

Back