izpis_h1_title_alt

Linearizacija holomorfnih funkcij v bližini negibnih točk : delo diplomskega seminarja
ID Gombač, Matevž (Author), ID Boc Thaler, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,73 MB)
MD5: D9C3CDEE88D21F0E5076445D19098863

Abstract
Kompleksna dinamika se ukvarja z iteriranjem holomorfnih funkcij na Riemannovi sferi. V diplomskem delu so natančneje predstavljeni dinamični sistemi, ki jih dobimo z iteriranjem racionalnih funkcij oziroma iteriranjem holomorfnih endomorfizmov Riemannove sfere $f : {\mathbb C}_\infty \to {\mathbb C}_\infty$. Družina iteratov $\{f^n; n \ge 1\}$ razdeli ${\mathbb C}_\infty$ na komplementarni si množici; Fatoujevo množico $F$, tj. množico točk, v okolici katerih je družina $\{f^n; n \ge 1\}$ normalna, ter Juliajevo množico $J$, ki je njen komplement. Vsaka taka preslikava ima negibne točke, ki jih delimo na pet tipov glede na njihov množitelj. Glavni cilj diplomskega dela je lokalno linearizirati $f$ v okolici negibnih točk in opisati obnašanje orbit v njihovi bližini. Dokažemo, da je lokalno v bližini negibne točke $\zeta$ $f$ konformno konjugirana linearni preslikavi $z \mapsto \lambda z$ v primeru privlačnih, odbojnih in nekaterih iracionalno nevtralnih negibnih točk. V primeru superprivlačnih negibnih točk je $f$ konjugirana $z \mapsto z^p$, pri racionalnih pa lahko na nekem disku, ki ima negibno točko na svojem robu, funkcijo $f$ konjugiramo do translacije $z \mapsto z+1$.

Language:Slovenian
Keywords:Negibna točka, konformna konjugacija, množitelj, normalna družina, Fatoujeva in Juliajeva množica
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-161402 This link opens in a new window
UDC:517.5
COBISS.SI-ID:207757059 This link opens in a new window
Publication date in RUL:11.09.2024
Views:201
Downloads:20
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Linearization of holomorphic functions near fixed points
Abstract:
Complex dynamics is the study of iteration of holomorphic functions on the Riemann sphere. In this thesis, we will focus on dynamical systems obtained by iterating rational functions, that is iterating a holomorphic endomorphism of the Riemann sphere $f : {\mathbb C}_\infty \to {\mathbb C}_\infty$. The family of iterates $\{f^n; n \ge 1\}$ divides ${\mathbb C}_\infty$ into two complementary sets; the Fatou set $F$ , that is the set of points in the neighbourhood of which the family $\{f^n; n \ge 1\}$ is normal, and the Julia set $J$, which is its complement. Each such map has fixed points, which are classified into five types according to their multiplier. The main goal of this thesis is to locally linearize $f$ in some neighbourhood of fixed points and describe the behaviour of orbits in their vicinity. We prove that locally near a fixed point $\zeta$, $f$ is conformally conjugate to a linear map $z \mapsto \lambda z$ in the case of attracting, repelling and some irrationally indifferent fixed points. In the case of superattracting fixed points f is conjugate to $z \mapsto z^p$, and in the case of rationally indifferent ones it is conjugate to $z \mapsto z+1$ in some disk with $\zeta$ on its boundary.

Keywords:Fixed point, conformal conjugation, multiplier, normal family, Fatou and Julia set

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back