Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Uporaba strojnega učenja pri razvoju kemijskih procesov
ID
Dobnikar, Žan
(
Author
),
ID
Žnidaršič Plazl, Polona
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(2,10 MB)
MD5: 74652847D53F349B78328C6D275500EF
Image galllery
Abstract
Diplomsko delo govori o razvoju in zgodovini strojnega učenja, prikaže njegove pomembnejše metode in kako delujejo, njihove prednosti in pomanjkljivosti ter kako se razne metode lahko aplicirajo na področju kemije. Opiše tudi postopek optimizacije reakcijskih pogojev in procese odkrivanja novih učinkovin s pomočjo teh metod. Metode tudi primerja s tradicionalnimi metodami in opiše človeško vlogo na področju strojnega učenja.
Language:
Slovenian
Keywords:
strojno učenje
,
umetna inteligenca
,
kemijski procesi.
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FKKT - Faculty of Chemistry and Chemical Technology
Year:
2024
PID:
20.500.12556/RUL-161360
COBISS.SI-ID:
214526467
Publication date in RUL:
10.09.2024
Views:
383
Downloads:
76
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
DOBNIKAR, Žan, 2024,
Uporaba strojnega učenja pri razvoju kemijskih procesov
[online]. Bachelor’s thesis. [Accessed 30 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=161360
Copy citation
Share:
Secondary language
Language:
English
Title:
Use of machine learning for the development of chemical processes
Abstract:
The thesis discusses the development and history of machine learning, showcasing its major methods and how they function, their advantages and disadvantages, and demonstrates how various methods can be applied in the field of chemistry. It also describes the process of optimizing reaction conditions and the discovery of new active substances using these methods. Additionally, the thesis compares these methods with traditional ones and describes the human role in the field of machine learning.
Keywords:
machine learning
,
artificial intelligence
,
chemical processes.
Similar documents
Similar works from RUL:
[Knowledge transfer between classifiers in machine learning]
Združevanje večmodalne informacije in čezmodalno učenje v umetnih spoznavnih sistemih
Data protection in banking and anti-money laundering and counter terrorism financing
The potential of machine learning for fault identification in rotor dynamics
Machine learning on embedded platforms
Similar works from other Slovenian collections:
Machine Learning
Use of neural networks in cybersecurity
A comprehensive overview of automated machine learning tools
Digital transformation in healthcare
Back