Details

Uporaba strojnega učenja pri razvoju kemijskih procesov
ID Dobnikar, Žan (Author), ID Žnidaršič Plazl, Polona (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,10 MB)
MD5: 74652847D53F349B78328C6D275500EF

Abstract
Diplomsko delo govori o razvoju in zgodovini strojnega učenja, prikaže njegove pomembnejše metode in kako delujejo, njihove prednosti in pomanjkljivosti ter kako se razne metode lahko aplicirajo na področju kemije. Opiše tudi postopek optimizacije reakcijskih pogojev in procese odkrivanja novih učinkovin s pomočjo teh metod. Metode tudi primerja s tradicionalnimi metodami in opiše človeško vlogo na področju strojnega učenja.

Language:Slovenian
Keywords:strojno učenje, umetna inteligenca, kemijski procesi.
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Year:2024
PID:20.500.12556/RUL-161360 This link opens in a new window
COBISS.SI-ID:214526467 This link opens in a new window
Publication date in RUL:10.09.2024
Views:384
Downloads:76
Metadata:XML DC-XML DC-RDF
:
DOBNIKAR, Žan, 2024, Uporaba strojnega učenja pri razvoju kemijskih procesov [online]. Bachelor’s thesis. [Accessed 30 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=161360
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Use of machine learning for the development of chemical processes
Abstract:
The thesis discusses the development and history of machine learning, showcasing its major methods and how they function, their advantages and disadvantages, and demonstrates how various methods can be applied in the field of chemistry. It also describes the process of optimizing reaction conditions and the discovery of new active substances using these methods. Additionally, the thesis compares these methods with traditional ones and describes the human role in the field of machine learning.

Keywords:machine learning, artificial intelligence, chemical processes.

Similar documents

Similar works from RUL:
  1. [Knowledge transfer between classifiers in machine learning]
  2. Združevanje večmodalne informacije in čezmodalno učenje v umetnih spoznavnih sistemih
  3. Data protection in banking and anti-money laundering and counter terrorism financing
  4. The potential of machine learning for fault identification in rotor dynamics
  5. Machine learning on embedded platforms
Similar works from other Slovenian collections:
  1. Machine Learning
  2. Use of neural networks in cybersecurity
  3. A comprehensive overview of automated machine learning tools
  4. Digital transformation in healthcare

Back