Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Argumentirano strojno učenje za klasifikacijo slik
ID
Križnar, Anton
(
Author
),
ID
Žabkar, Jure
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(948,84 KB)
MD5: CE94E7DA7FBA23BC032AEA522700A30D
Image galllery
Abstract
Argumentirano strojno učenje (ABML) (angl. argument based machine learning) je razširitev metod strojnega učenja, kjer s podajanjem argumentov pri napačno klasificiranih primerih dodajamo znanje domenskega strokovnjaka. ABML običajno razširja metode, ki se učijo klasifikacijska pravila. Sodobne metode za nalogo klasifikacije slik uporabljajo konvolucijske nevronske mreže (CNN) (angl. convolutional neural network), ki jih nadgrajujemo s principi ABML. Glavni izziv je vključevanje principov ABML v model globokega strojnega učenja, saj so ti modeli težko razložljivi. Za razlago modelov CNN je primerna tehnika pridobivanja aktivacijske slike razreda (CAM) (ang. class activation mapping). Težko razložljivo pa je tudi domensko znanje za klasifikacijo slik. Argumente domenskega strokovnjaka lahko zajamemo kot točke na sliki. S primerjavo slik CAM in formalnih argumentov lahko v model vključimo domensko znanje. Oznake za konstrukcijo argumentov so bile zajete z razvitim programom in računalniško miško. Analiza delovanja razvitega modela je narejena na umetnih slikah likov. Pokazali smo, da z uporabo ABML za klasifikacijo slik lahko izboljšamo uspešnost modela tudi z različnimi vrstami argumentov.
Language:
Slovenian
Keywords:
argumentirano strojno učenje
,
konvolucijske nevronske mreže
,
klasifikacija slik
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2024
PID:
20.500.12556/RUL-161309
COBISS.SI-ID:
211574275
Publication date in RUL:
09.09.2024
Views:
433
Downloads:
78
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KRIŽNAR, Anton, 2024,
Argumentirano strojno učenje za klasifikacijo slik
[online]. Bachelor’s thesis. [Accessed 19 May 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=161309
Copy citation
Share:
Secondary language
Language:
English
Title:
Argument Based Machine Learning for Image Classification
Abstract:
Argument based machine learning (ABML) is an extension of machine learning methods in which domain experts provide additional knowledge by giving arguments for incorrectly classified cases. ABML typically extends methods that learn classification rules. The most advanced techniques for image classification tasks use convolutional neural networks (CNNs), which we are enhancing with ABML principles. The main challenge is incorporating ABML principles into a deep learning model, as these models are often difficult to interpret. Moreover, domain knowledge for image classification is challenging to interpret. One suitable technique for explaining CNN model decisions is class activation mapping (CAM). Domain expert arguments can be captured using a computer mouse and then incorporated into the model. By comparing CAMs with formal arguments, domain knowledge can be integrated into the model. Labels for constructing arguments were captured using a developed program and a computer mouse. The analysis of the model's performance was conducted using synthetic images of geometric shapes. We showed an improvement in performance for the ABML model for image classification even with different kinds of arguments.
Keywords:
argument based machine learning
,
convolutional neural networks
,
image classification
Similar documents
Similar works from RUL:
Analysis of strategies used in translating culturally specific terms and proper names in Italian translations of the manga "One Piece"
Translation of Slovenian culture-specific items into English and Spanish
The English translations of Zazie dans le métro
ekspresivnost, humor, besedne igre, metafore, podnaslovno prevajanje, kompenzacija, prevodna strategija, Prijatelji
Samodejno odkrivanje semantičnih premikov v prevodih
Similar works from other Slovenian collections:
Primerjava prevajanja turcizmov v slovenskem in angleškem prevodu romana Most na Drini avtorja Iva Andrića
TRANSLATION OF CULTURE-SPECIFIC ELEMENTS IN THE NOVEL "EAT, PRAY, LOVE"
“ALICE'S ADVENTURES IN WONDERLAND”: TRANSLATION OF WORDPLAYS AND CULTURE-SPECIFIC ELEMENTS
Translation of cultural-specific elements in the sitcom Friends
Culture-Specific items in the croatian translation of dušan čaters slovene novel pops drunk again
Back