izpis_h1_title_alt

Na podatkih iz hitre kamere temelječa podatkovna identifikacija dinamskih lastnosti
ID Čarman, Marcel (Author), ID Slavič, Janko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,56 MB)
MD5: 4075AC2CA94A95A52E36B380BEA0C4F3

Abstract
Določevanje mehanskih lastnosti konstrukcij je lahko dokaj zapleten in zamuden postopek, kjer je potrebna obsežna predpriprava preizkušanca na testiranje. Zaradi večjih napredkov na področju umetne inteligence, strojnega vida in strojnega učenja, lahko ta postopek poenostavimo in pohitrimo. V tej diplomski nalogi je podrobno predstavljen in obrazložen postopek, kako vzpostaviti in na trenirati model konvolucijske nevronske mreže, ki nam glede na vhodne parametre vrne mehanske lastnosti preizkušanca. S pomočjo že obstoječih Pythonovih paketov za strojni vid smo pridobili potrebne vhodne parametre za pridobitev želenih mehanskih lastnosti.

Language:Slovenian
Keywords:Umetna inteligenca, Strojni vid, Konvolucijska nevronska mreža, Nevron, Lastna frekvenca, Nihajne oblike
Work type:Bachelor thesis/paper
Organization:FS - Faculty of Mechanical Engineering
Year:2024
PID:20.500.12556/RUL-161002 This link opens in a new window
Publication date in RUL:06.09.2024
Views:194
Downloads:42
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:High-speed-camera data-based Dynamic Identification
Abstract:
Determining the mechanical properties of structures can be quite a complex and time-consuming process, requiring extensive preparation of the test subject for testing. Due to significant advancements in artificial intelligence, computer vision, and machine learning, this process can be simplified and accelerated. This thesis provides a detailed presentation and explanation of the procedure for establishing and training a convolutional neural network model that, based on input parameters, returns the mechanical properties of the test subject. Using existing Python packages for computer vision, we obtained the necessary input parameters to acquire the desired mechanical properties.

Keywords:Artificial Intelligence, Computer Vision, Convolutional Neural Network, Neuron, Natural Frequency, Mode Shapes

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back