izpis_h1_title_alt

Do Rungejeve aproksimacije prek kvazikonformnega zgibanja : magistrsko delo
ID Učakar, Beno (Author), ID Boc Thaler, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,54 MB)
MD5: 4D053C665083407308A8C752BB775A37

Abstract
Rungejev aproksimacijski izrek je eden izmed osrednjih rezultatov kompleksne analize. Izrek nam pove, da lahko holomorfne funkcije na kompaktih aproksimiramo z racionalnimi preslikavami, ne zagotovi pa nam nadzora nad kritičnimi točkami teh racionalnih preslikav. Na začetku leta 2023 sta ameriška matematika C. J. Bishop in K. Lazebnik objavila članek, v katerem sta dokazala izboljšavo Rungejevega aproksimacijskega izreka, tako imanovano Runge+ aproksimacijo, ki nam da ta dodaten nadzor nad kritičnimi točkami. Dokaz izreka temelji na tehniki kvazikonformnega zgibanja, ki jo je leta 2015 razvil C. J. Bishop. V delu najprej predstavimo teorijo kvazikonfomrnih preslikav, nato izpeljemo kvazikonformno zgibanje, nazadnje pa dokažemo Runge+ aproksimacijo v primeru povezanih Rungejevih kompaktov.

Language:Slovenian
Keywords:Rungejeva aproksimacija, Runge+ aproksimacija, kvazikonformne preslikave, kvaziregularne preslikave, kvazikonformno zgibanje, končni Blaschkejevi produkti
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-160979-20e697b8-de71-1825-5875-7672ee79508d This link opens in a new window
UDC:517.5
COBISS.SI-ID:206406147 This link opens in a new window
Publication date in RUL:06.09.2024
Views:204
Downloads:73
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:To Runge approximation via quasiconformal folding
Abstract:
The Runge approximation theorem is one of the fundamental results of complex analysis. The theorem states that we can approximate holomorphic functions on compact sets using rational maps, but it doesn't give us any control over the critical points of these rational maps. At the beginning of 2023, the American mathematicians C. J. Bishop and K. Lazebnik published a paper, where they proved an improved version of the Runge approximation theorem, the so-called Runge+ approximation, which does give us control over critical points. The proof is based on a technique called quasiconformal folding, developed by C. J. Bishop in 2015. In the thesis we first present the theory of quasiconformal maps, then derive quasiconformal folding and finally, we prove Runge+ approximation in the case of connected Runge compacts.

Keywords:Runge approximation, Runge+ approximation, quasiconformal maps, quasiregular maps, quasiconformal folding, finite Blaschke products

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back