izpis_h1_title_alt

Matematično modeliranje strižnega modula alginatnih hidrogelov zamreženih s kationi različnih kovin
ID Golobič, Jurij (Author), ID Ručigaj, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,37 MB)
MD5: 9AF59FD83CF69641D9A96CA382AB2A07

Abstract
Hidrogeli so se zaradi svojih edinstvenih lastnosti, kot sta visoka vsebnost vode in mehka, gelu podobna konsistenca za uporabne izkazali na različnih področjih, vključno z biomedicino, dostavo zdravil, tkivnim inženiringom in razvojem senzorjev. Reološke lastnosti hidrogelov, ki se nanašajo na njihov tokovno in deformacijsko obnašanje pod vplivom zunanjih sil, igrajo ključno vlogo pri določanju njihove primernosti za specifične aplikacije. Razumevanje njihovih reoloških lastnosti omogoča napovedovanje, kako se bodo hidrogeli odzvali na aplicirano mehansko napetost bodisi v človeškem telesu bodisi v določeni napravi.V magistrskem delu sem preučeval alginatne hidrogele, Vzorce le-teh sem pripravil s fizikalnim premreženjem raztopin alginata, pri čemer sem uporabil katione Ca2+, Sr2+, Ba2+, Mg2+, Cu2+ , Al3+ in Fe3+ različnih koncentracij. Vzorcem sem nato izmeril njihov strižni modul. Za kalcijeve ione je bila predhodno že razvita modelna enačba, ki pravi, da gostota zamreženja s koncentracijo ionov zamreževala narašča eksponentno. V okviru magistrskega dela sem uspel potrditi domnevo, da tovrstna zveza velja tudi za določen nabor drugih dvovalentnih ionov. Za resnično se je izkazala tudi teza, da je parameter v modelni enačbi, imenovan ionska afiniteta, povezan z velikostjo iona zamreževala, in sicer naj bi se vrednost le-te z večanjem ionskega radija zamreževala zniževala . Poleg tega sem uspel domneve predhodne teorije ter omenjeno modelno enačbo razširiti tudi na trovalentne katione aluminija in železa, za katere je bilo sicer predhodno znano, da so z alginatom zmožni tvoriti hidrogele. Pri tem se je izkazalo, da na vrednost parametra afinitete še močneje kot velikost kationov zamreževala vpliva njihov naboj. Gostota zamreženja oziroma ustrezni strižni modul sta tako za večvalentne ione večja, vrednost ionske afinitete pa temu primerno nižja, kot je to v primeru uporabe dvovalentnih ionov enakih množinskih koncentracij. V okviru magistrskega dela sem razvil tudi matematični model za napovedovanje gostote zamreženja alginatnih hidrogelov oziroma ustreznega strižnega modula le-teh pri različnih koncentracijah ionov zamreževala. Osnova modela je poenostavljena simulacija procesa ionskega zamreževanja raztopine alginata. Na podlagi le-te smo si lahko med drugim razjasnili povezavo med koncetracijo zamreževalnega reagenta in strižnim modulom nastalega hidrogela. Model v svoji končni obliki upošteva tudi vezavne afinitete ter specifične koordinacijske sposobnosti posameznega kationa in predstavlja potencialno napovedno orodje za prilagajanje reoloških lastnosti alginatnih hidrogelov specifičnim aplikacijam. Rezultati magistrskega dela tako prispevajo h globljemu razumevanju temeljnih interakcij, ki uravnavajo proces ionskega zamreževanja v biopolimernih sistemih.

Language:Slovenian
Keywords:alginat, zamreževalni reagent, ionska afiniteta, hidrogel, reologija
Work type:Master's thesis/paper
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Year:2024
PID:20.500.12556/RUL-160962 This link opens in a new window
Publication date in RUL:06.09.2024
Views:38
Downloads:34
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Mathematical modeling of shear modulus of alginate hydrogels cross-linked with different metal cations
Abstract:
Due to their unique properties such as high water content and soft gel-like consistency hydrogels have proven useful in a variety of fields including biomedicine, drug delivery, tissue engineering, and sensor development. The rheological properties of hydrogels which refer to their flow and deformation behavior under external force application play a key role in determining their suitability for specific applications. Understanding their rheological properties allows us to predict their response to applied mechanical stress either in the human body or in a specific device. In my master's thesis I studied alginate hydrogels. I prepared hydrogels samples by physical crosslinking of alginate solutions using Ca2+, Sr2+, Ba2+, Mg2+, Cu2+, Al3+ and Fe3+ cations of various concentrations. I then measured their shear modulus. A model equation was previously developed for calcium ions, which states that the crosslinking density increases exponentially with the concentration of crosslinking cations. As a part of my master's thesis I managed to confirm the assumption that analogous equation also applies to a certain set of other divalent cations. The thesis that the parameter in the model equation, called ionic affinity, is related to the size of the cross-linker ion i.e. its value should decrease with increasing ionic radius of the cross-linker, also proved to be true. Furthermore, I managed to extend the assumptions of the previous theory and the aforementioned model equation to trivalent aluminum and iron cations, whose ability to form hydrogels with alginate was previously known . However, it turned out that the value of the affinity parameter is even more strongly influenced by the charge of the crosslinking cations than its size (ionic radius). The cross-linking density and corresponding shear modulus are thus higher for trivalent ions and the ionic affinity parameter is correspondingly lower than in the case of using divalent ions of the same molar concentration. As a part of my master's thesis, I also developed a mathematical model which predicts the crosslinking density of alginate hydrogels and their corresponding shear modulus at various concentrations of cross-linking agent. The basis of the model is a simplified simulation of the ionic cross-linking process of alginate solution. Based on this, we were able to clarify the connection between the concentration of cross-linking agent and the obtained crosslinking density and shear modulus of the resulting hydrogel. In its final form the model also accounts for the binding affinities and specific coordination abilities of individual metals and represents a potential predictive tool for adapting the rheological properties of alginate hydrogels to specific applications. My master's work results thus contribute to a deeper understanding of the fundamental interactions which regulate the ionic cross-linking process in biopolymer systems.

Keywords:alginate, cross-linking agent, ionic affinity, hydrogel, rheology

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back