izpis_h1_title_alt

Ugotavljanje napredovanja hipertrofične kardiomiopatije z uporabo metod za zaznavanje sprememb v podatkih
ID Klemenc, Jan (Author), ID Bosnić, Zoran (Mentor) More about this mentor... This link opens in a new window, ID Pičulin, Matej (Comentor)

.pdfPDF - Presentation file, Download (768,20 KB)
MD5: E9E34EBFA35DAB075B6DA4877E01C97A

Abstract
Strojno učenje je orodje za delo z velikimi količinami podatkov, ki jih je sicer težko obravnavati. Uporaba tega orodja je vedno bolj pogosta in prodira tudi v medicino. Tehnologija je v medicini že močno prisotna in s tem je na voljo veliko podatkov, ki so uporabni pri strojnem učenju. To diplomsko delo obravnava podatke pacientov hipertrofične kardiomiopatije, bolezni srca in ožilja. V okviru diplomskega dela smo razvili sistem, ki spremlja zaporedne meritve posameznih pacientov in opozori ob pomembnem poslabšanju zdravstvenega stanja. Kritičnost stanja je ocenjena z uporabo napovednega modela, ki napoveduje, ali se bo pacientu kmalu zgodil ključen dogodek, kot je srčni zastoj. Model je predhodno naučen na učni množici. Spremembe vrednosti pa zazna metoda Page-Hinkley. Sistem ima tudi možnost inkrementalnega učenja. Sistem je bil nato testiran na podmnožici podatkov z uporabo različnih napovednih modelov. Prikazana je tudi pomembnost različnih delov sistema za uspešnost. Najboljši rezultat je bil dosežen z logistično regresijo, pri kateri je bila pri meri F1 dosežena vrednost 0.357 s senzitivnostjo 0.426, preciznostjo 0.308 in specifičnostjo 0.976.

Language:Slovenian
Keywords:strojno učenje, inkrementalno učenje, razvoj bolezni, zaznavanje spremembe stanja, Page-Hinkley
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-160703 This link opens in a new window
COBISS.SI-ID:209013763 This link opens in a new window
Publication date in RUL:03.09.2024
Views:181
Downloads:22
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Monitoring progression of hypertrophic cardiomyopathy using data change detection methods
Abstract:
Machine learning (ML) is a tool for working with huge amounts of data that would otherwise be a difficult task. Its use is surging and it is now also being used in medicine. Due to technology being ever-present in medicine, there is already an abundance of data ready to be used in ML. This thesis works with data of patients with hypertrophic cardiomyopathy, a cardiovascular disease. A system was developed that observes consecutive measurements of a patient and alerts us in case of significant worsening. The severity of the patient's condition is estimated using a pretrained prediction model, which predicts the chances of patient soon having a key event such as a cardiac arrest. The changes in estimations are detected using the Page-Hinkley method. Incremental learning was also implemented. The system was tested using various prediction models. The results also demonstrate the importance of different components of the system for its overall usefulness. The best result achieved an F1 score of 0.357, with a sensitivity of 0.426, a precision of 0.308 and a specificity of 0.976. This result was achieved using logistic regression.

Keywords:machine learning, incremental learning, disease progression, risk stratification, drift detection, Page-Hinkley

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back