izpis_h1_title_alt

Uporaba superpikslov za klasifikacijo tipov poljščin v daljinskem zaznavanju
ID Osvald, Aleksander (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window, ID Račič, Matej (Comentor)

.pdfPDF - Presentation file, Download (2,85 MB)
MD5: 54AD6DE2E2AB85FD3CFD133C606013EE

Abstract
V tej nalogi preučujemo uporabo superpikslov kot vmesne enote za klasifikacijo tipov poljščin v daljinskem zaznavanju. Multispektralne slike, pridobljene iz satelita Sentinel-2 so segmentirane v superpiksle z uporabo metod SLIC in Quickshift. Nato je nad povprečnimi časovnimi vrstami posameznih superpikslov izvedena klasifikacija z metodami LightGBM in SITS-BERT. Na podatkih o tipih poljščin v Sloveniji iz leta 2017 je pristop s superpiksli primerjan s klasifikacijo podatkov za celotne parcele ter posamezne piksle. Uporaba superpikslov se je izkazala kot smiselna zlasti v primerih, ko za klasifikacijo zadostuje grobji opis območja, saj taka segmentacija pogosto združi podatke za majhne ali ozke parcele. V primeru večjih parcel pa se superpiksli izkažejo za učinkovito tehniko povzemanja, ki olajšuje interpretacijo satelitskih podatkov brez uporabe podatkov o posameznih parcelah.

Language:Slovenian
Keywords:daljinsko zaznavanje, Sentinel-2, segmentacija slike, klasifikacija površja, strojno učenje, globoko učenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-160692 This link opens in a new window
COBISS.SI-ID:206280451 This link opens in a new window
Publication date in RUL:03.09.2024
Views:219
Downloads:48
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Superpixels for remote sensing classification of crop types
Abstract:
This thesis addresses the use of superpixels as an intermediate unit for the classification of crop types in remote sensing. Multispectral images obtained from the satellite Sentinel-2 are segmented into superpixels using the SLIC and Quickshift methods. Then, over the average time series of individual superpixels, classification is carried out using the LightGBM and SITS-BERT methods. On the 2017 data on crop types in Slovenia, the superpixel approach is compared with the classification of data for whole parcels and individual pixels. The use of superpixels has proved to be particularly sensible in cases where a rougher description of the area is sufficient for classification, as such segmentation often aggregates data for small or narrow parcels. In the case of larger parcels, however, superpixels prove to be an effective summarisation technique that facilitates the interpretation of satellite data without the use of parcel data.

Keywords:remote sensing, Sentinel-2, image segmentation, land use and land cover classification, machine learning, deep learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back