Details

Zasnova metode za napovedovanje obrabe orodja v odrezovalnih procesih
ID Žagar, Miha (Author), ID Pušavec, Franci (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,47 MB)
MD5: 0FFCAD720B53FA213A84CEC498009116

Abstract
V diplomski nalogi je obravnavan problem napovedovanja obrabe orodij v odrezovalnih procesih, kar je ključno za spremljanje in izboljšanje kakovosti proizvodnje. Predstavljena je metodologija uporabe metode Support Vector Regression (SVR) za natančno napovedovanje obrabe orodij na podlagi večsenzorskih podatkov. Eksperimentalni del naloge vključuje izvedbo testiranj, kjer so bile merjene rezalne in podajalne sile ter obraba orodja. Rezultati so pokazali, da metoda SVR omogoča zanesljive napovedi, kar pripomore k boljšemu razumevanju in spremljanju obrabe orodij med proizvodnim procesom.

Language:Slovenian
Keywords:obraba orodja, odrezovalni procesi, strojno učenje, Support Vector Regression, napovedovanje, večsenzorski podatki
Work type:Final paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2024
Number of pages:XIII, 57 f.
PID:20.500.12556/RUL-160659 This link opens in a new window
UDC:621.9:539.375.6:531.78(043.2)
COBISS.SI-ID:214969347 This link opens in a new window
Publication date in RUL:03.09.2024
Views:312
Downloads:63
Metadata:XML DC-XML DC-RDF
:
ŽAGAR, Miha, 2024, Zasnova metode za napovedovanje obrabe orodja v odrezovalnih procesih [online]. Bachelor’s thesis. [Accessed 26 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=160659
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Design of a method for predicting tool wear in machining processes
Abstract:
This thesis addresses the problem of predicting tool wear in machining processes, which is crucial for monitoring and improving production quality. The methodology of using Support Vector Regression (SVR) to accurately predict tool wear based on multi-sensor data is presented. The experimental part of the thesis includes conducting tests where cutting and feed forces, as well as tool wear, were measured. The results showed that the SVR method provides reliable predictions, contributing to better understanding and monitoring of tool wear during the production process.

Keywords:toolwear, maschining processes, maschine learning, Support Vector Regression, prediction, multi-sensor data

Similar documents

Similar works from RUL:
  1. I-MAESTRO data
  2. Factors influencing the diameter growth of beech, spruce and fir in uneven-aged forests in Dinaric Mountains, Slovenia under weak to moderate disturbances
  3. Diameter, height and species of 42 million trees in three European landscapes generated from field data and airborne laser scanning data
  4. Določevanje vrst drevja v različnih valovnih dolžinah aerolaserskih podatkov
  5. Izdelava geodetskega načrta na podlagi podatkov aerolaserskega skeniranja
Similar works from other Slovenian collections:
  1. Mobilno lasersko skeniranje avtocestnih odsekov
  2. Uporaba oblakov 3D-točk v gradbeništvu

Back