izpis_h1_title_alt

Catalanova domneva : magistrsko delo
ID Kralj, Samo (Author), ID Šivic, Klemen (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,01 MB)
MD5: 87BCAFAD531418BFBF519D6484D3ECDF

Abstract
Catalanova domneva pravi, da je $3^2-2^3=1$ edina rešitev enačbe $x^m-y^n=1$ za naravna števila $x$, $y$, $m$, $n$, kjer velja $m,n > 1$. Domnevo je leta 2002 dokončno dokazal Preda Mihailescu. V magistrskem delu predstavimo zgodovino reševanja Catalanove domneve in obravnavamo posamezne ključne rezultate. Tako dokažemo Catalanovo domnevo v primerih, ko je eden od eksponentov sodo število. Nadaljne reševanje Catalanove domneve sloni na rezultatih iz algebraične teorije števil in posebej teorije ciklotomičnih polj. Med drugim dokažemo Casselsov izrek o deljivosti, ki pravi, da če sta neničelni celi števili $x$, $y$ rešitvi enačbe $x^p-y^q=1$, kjer sta $p$ in $q$ lihi praštevili, potem $p$ deli $y$ in $q$ deli $x$. Dokažemo tudi Mihailescujev izrek o deljivosti, ki za isto enačbo pravi, da $q^2$ deli $x$ in $p^2$ deli $y$. Mihailescujev končni dokaz Catalanove domneve je sestavljen iz dveh delov. V magistrski nalogi v celoti predstavimo del, ko $p$ deli $q-1$ in del dokaza drugega dela, ko $p$ ne deli $q-1$, v katerem je uporabljena Rungeva metoda.

Language:Slovenian
Keywords:Catalanova domneva, Casselsov izrek o deljivosti, Mihailescujev izrek o deljivosti, dvojni Wieferichov par, algebraično številsko polje, ciklotomično polje, grupni kolobar, ulomljeni ideal, Stickelbergerjev ideal
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-160626 This link opens in a new window
UDC:511
COBISS.SI-ID:206168579 This link opens in a new window
Publication date in RUL:01.09.2024
Views:170
Downloads:30
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Catalan's conjecture
Abstract:
Catalan's conjecture asserts that $3^2-2^3=1$ is the only solution to the equation $x^m-y^n=1$ for natural numbers $x$, $y$, $m$, $n$, where $m, n > 1$. The conjecture was proven by Preda Mihailescu in 2002. In the thesis, we present the history of solving Catalan's conjecture and examine individual key results. We prove Catalan's conjecture in cases where one of the exponents is an even number. Further resolution of Catalan's conjecture relies on results from algebraic number theory, particularly the theory of cyclotomic fields. Among other things, we prove Cassels' divisibility theorem, which states that if nonzero integers $x$ and $y$ are solutions to the equation $x^p-y^q=1$, where $p$ and $q$ are odd primes, then $p$ divides $y$ and $q$ divides $x$. We also prove Mihailescu's divisibility theorem for the same equation, stating that $q^2$ divides $x$ and $p^2$ divides $y$. Mihailescu's final proof of Catalan's conjecture consists of two parts. In the master's thesis, we fully present the part where $p$ divides $q-1$ and a part of the proof of the second part when $p$ does not divide $q-1$, using Runge's method.

Keywords:Catalan’s conjecture, Cassels’ divisibility theorem, Mihailescu’s divisibility theorem, double Wieferich pair, number field, cyclotomic field, group ring, fractional ideal, Stickelberger’s ideal

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back