izpis_h1_title_alt

Starost informacije in zakasnitev v teoriji čakalnih vrst : delo diplomskega seminarja
ID Žust, Martin (Author), ID Perman, Mihael (Mentor) More about this mentor... This link opens in a new window, ID Hribar, Jernej (Comentor)

.pdfPDF - Presentation file, Download (578,27 KB)
MD5: 34BA3FD59DD114AE592A7960E37FCA10

Abstract
V diplomskem delu predstavljamo dve ključni metriki za merjenje aktualnosti informacij v čakalnih sistemih: zakasnitev in starost informacije. Najprej se lotimo pregleda temeljnih pojmov iz teorije verjetnosti, ki so podlaga za nadaljevanje dela. Uvedemo nekatere najbolj pomembne porazdelitve, njihove lastnosti in povezave med njimi. Nadaljujemo s predstavitvijo osnov teorije čakalnih vrst, ki je specifično podpodročje teorije verjetnosti. V naslednjem poglavju pa se osredotočamo na obravnavo metrik starosti informacije in zakasnitve znotraj teorije čakalnih vrst. Pojasnimo tudi razlike med njima, predstavimo njune vrednosti v določenih sistemih ter različice starosti informacije, kot je vrhna starost informacije. Reševanja problemov izračuna vrednosti metrik se lotimo na dva načina: analitično in numerično. Pri numeričnem pristopu uporabimo programski jezik Python.

Language:Slovenian
Keywords:Starost informacije, zakasnitev, čakalna vrsta, eksponentna porazdelitev, markovska veriga
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-160588 This link opens in a new window
UDC:519.2
COBISS.SI-ID:206171651 This link opens in a new window
Publication date in RUL:31.08.2024
Views:201
Downloads:37
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Age of information and latency in queueing theory
Abstract:
In this thesis, we present two key metrics for measuring the freshness of information in queueing systems: latency and age of information. We begin with an overview of fundamental concepts in probability theory, which form the basis for further discussion. We introduce some of the most important distributions, their properties, and the relationships between them. We continue with an introduction to the basics of queueing theory, a specific subfield of probability theory. In the following chapter, we focus on the metrics of age of information and latency within the context of queueing theory. We explain the differences between them, present their values in certain models, and discuss variations of the metric age of information, such as peak age of information. We approach the problem of calculating the values of these metrics in two ways: analytically and numerically. For the numerical approach, we use the Python programming language.

Keywords:Age of information, latency, queue, exponential distribution, markov chain

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back