izpis_h1_title_alt

Vrednotenje in razvoj in silico modelov za napovedovanje vezave spojin na izbrane jedrne hormonske receptorje
ID Stanojević, Mark (Author), ID Sollner Dolenc, Marija (Mentor) More about this mentor... This link opens in a new window, ID Vračko Grobelšek, Marjan (Comentor)

.pdfPDF - Presentation file, Download (3,57 MB)
MD5: B6E7F2FC52457A6E6E45E144872ECFDD

Abstract
V raziskavah v sklopu doktorske disertacije smo se posvetili preučevanju računalniških modelov za napovedovanje motilcev endokrinega sistema (MES) prek vezave na izbrane jedrne receptorje (androgeni, estrogeni in glukokortikoidni receptorji ter receptorji za tiroidne hormone). V prvem delu doktorske disertacije smo preverili, ali lahko z računalniškimi modeli, ki so prosto dostopni na spletu, dovolj dobro napovemo možnosti vezave izbranega niza spojin na izbrane jedrne receptorje. Napovedi izbranega niza spojin smo primerjali z in vitro podatki, zbranimi v bazi podatkov CompTox Chemistry Dashboard. Ugotovili smo, da imajo obstoječi izbrani računalniški modeli podobno točnost napovedovanja, vendar ne zagotavljajo dovolj velike točnosti, da bi jih lahko kot samostojna orodja uporabili za napovedovanje vezave na izbrane jedrne receptorje. Zato smo v nadaljevanju poskušali dobiti uporabnejše rezultate z združevanjem napovedi modelov. Trije izdelani kombinirani modeli niso izboljšali točnosti, a so kljub temu dali uporabnejše rezultate. Napovedovanje z inovativnim modelom s pravilom negativnega soglasja je zelo izboljšalo občutljivost. Bistveno zmanjšanje lažno negativnih rezultatov nam omogoča učinkovito prepoznavanje neaktivnih spojin, ki jih je mogoče izključiti iz nadaljnjega testiranja na drugih ravneh. V drugem delu doktorske dizertacije smo izdelali lastne računalniške modele z umetnimi nevronskimi mrežami za napovedovanje vezave na izbrane jedrne receptorje. Pri tem smo ločili modele za napovedovanje agonističnega in antagonističnega delovanja. Točnost modelov smo ovrednotili z navzkrižnim preverjanjem. Napovedna moč izdelanih modelov je velika, predvsem zaradi točnosti napovedi vezave. Poleg tega lahko s spreminjanjem klasifikacijskega praga modelov učinkovito identificiramo spojine, pri katerih je negotovost napovedi največja. Take spojine vključimo v nadaljnje testiranje in izdelamo bolj izpopolnjeno napoved za preostale spojine. Preučili smo tudi strukturne fragmente spojin, ki se vežejo na več izbranih jedrnih receptorjev. Spojine, ki vsebujejo dušikov atom, vezan na verigo z najmanj osmimi ogljikovimi atomi, in ne vsebujejo kisika, se bodo z veliko verjetnostjo vezale na izbrane jedrne receptorje.

Language:Slovenian
Keywords:motilci endokrinega sistema, CPANN, in silico, estrogeni receptorj, androgeni receptorj, receptor tiroidnega hormona, glukokortikoidni receptor
Work type:Doctoral dissertation
Organization:FFA - Faculty of Pharmacy
Year:2024
PID:20.500.12556/RUL-160550 This link opens in a new window
Publication date in RUL:31.08.2024
Views:195
Downloads:33
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The evaluation and development of in silico models prediction of compounds binding to selected nuclear hormone receptors
Abstract:
In the doctoral thesis, we focused on the investigation of computer models for the prediction of endocrine disruptors by binding to selected nuclear receptors (androgen, estrogen, glucocorticoid and thyroid hormone receptors). First, we investigated whether freely available computer models can adequately predict the binding ability of a selected group of compounds. The predictions for the selected group of compounds were compared with in vitro data collected in the CompTox Chemistry Dashboard database. We found that although the existing selected computer models had similar prediction accuracy, they were not accurate enough to be used as stand-alone tools. Therefore, we tried to achieve more useful results by combining the models. Although the three combined models did not improve accuracy, they provided more useful results. Prediction with the innovative negative consensus rule model significantly improved sensitivity. A significant reduction in false negatives allows efficient identification of inactive compounds that can be excluded from further testing at other levels. In the second part of the research, we developed our own computer models using artificial neural networks to predict the binding of compounds to selected nuclear receptors as agonist and antagonist separately. We evaluated the accuracy of the models by cross-validation. The predictive power of the developed models is high as the accuracy of binding prediction is significant. Furthermore, by adjusting the classification threshold of the models, we can effectively identify the compounds for which the prediction uncertainty is the highest. These compounds are included in further testing, and a refined prediction is made for the remaining compounds. We have also examined structural fragments of compounds that bind to several selected nuclear receptors. Compounds that contain a nitrogen atom attached to a chain of at least eight carbon atoms and that do not contain oxygen are likely to bind to the selected nuclear receptors.

Keywords:endocrine disrupting chemicals, CPANN, in silico, androgen receptor, estrogen receptor, thyroid receptor, glucocorticoid receptor

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back