izpis_h1_title_alt

Uporaba robotskega vida za detekcijo potencialnih trkov v robotski celici
ID LEVAC, LUKA (Author), ID Mihelj, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (18,10 MB)
MD5: 6C0A31CAD7754B3BD1C476F9E7AD9D38

Abstract
V podjetju Tajfun Planina d.o.o. raziskujemo možnost robotizacije prostora, kjer poteka struženje. V dotični celici bi šlo za izmenično delo delavcev in robota, kar prinaša nevarnost tujkov v celici. V magistrskem delu smo si zadali nalogo izdelati aplikacijo, ki bi pred začetkom robotove izmene z globinsko kamero pregledala robotsko celico in ocenila, ali je kakšen predmet na poti robotove trajektorije. Sprva smo v literaturi pregledali obstoječe rešitve. Preučili in opisali smo koncepte robotskega vida, ki smo jih uporabljali tekom tega dela. Podrobneje smo se posvetili tudi samim robotskim simulatorjem in njihovemu načinu zaznavanja trkov. Predstavljena je matematična osnova detekcije trkov predmetov v simulaciji. Robotski vid je bil izveden s kombinacijo robota Yaskawa Motoman GP180 in kamere Intel Realsense D435. Robot je z globinsko kamero poslikal prostor okoli sebe, sledila je združitev in obdelava 3D točk prostora z algoritmi, kot sta RANSAC in alfa rekonstrukcija oblik. Glavnina obdelave se je izvedla s Python knjižnico Open3D. Algoritem se je zaključil z detekcijo trkov, ki smo jo izvedli z uporabo simulatorja PyBullet. Na koncu smo v JavaScript ogrodju React pripravili še preprost uporabniški vmesnik. Delovanje aplikacije smo preizkusili v več možnih scenarijih. Algoritem zajemanja in obdelave se je izkazal za pravilnega. Rezultate detekcije in zaznave smo ocenili kot zadovoljive. Največje težave je predstavljal pogrešek uporabljene globinske kamere, ki se je preslikal v napako pri detekciji trkov.

Language:Slovenian
Keywords:robotski vid, simulacija, detekcija trkov, Python
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-160515 This link opens in a new window
COBISS.SI-ID:211251459 This link opens in a new window
Publication date in RUL:29.08.2024
Views:219
Downloads:48
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Use of robot vision to detect potential collisions in a robotic cell
Abstract:
At Tajfun Planina d.o.o., we are exploring the possibility of robotizing the CNC machining area. In this specific cell, the workers and the robot would work alternately, which brings the risk of foreign objects in the cell. The goal of this master thesis was to develop an application that would scan the robot cell with a depth camera before the robot's shift and detect wheter any object is in the path of the robot's trajectory. Initially, we reviewed existing solutions in the literature. We reviewed and described the robot vision concepts that were used during this work. We also looked in more detail at robot simulators and how they detect collisions. The mathematical basis for collision detection of objects in simulation is presented. Robotic vision was implemented using a combination of the Yaskawa Motoman GP180 robot and the Intel Realsense D435 camera. The robot used the depth camera to scan the space around it, followed by merging and processing the 3D points of the space using algorithms such as RANSAC, alpha shape reconstruction algorithm etc. The main processing was carried out using the Open3D library. The algorithm concluded with collision detection, which was performed using the PyBullet simulator. Finally, a simple user interface was prepared in React. The functionality of the application was tested in several possible scenarios. Our developed algorithm proved to work as expected. The results of the detection and recognition were evaluated as satisfactory. The biggest challenges were posed by the error of the depth camera used, which was reflected in inaccuracies of the collision detection.

Keywords:robot vision, simulation, collision detection, Python

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back