izpis_h1_title_alt

Nerazcepne komponente raznoterosti upodobitev končno razsežnih algeber : magistrsko delo
ID Čmrlec, Marko (Author), ID Šivic, Klemen (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (715,28 KB)
MD5: 1288C168315EC419AF3AD8E9346D1DCA

Abstract
Glavni cilj teorije upodobitev je razumeti vse upodobitve dane algebre in preslikave med njimi. Za to je dovolj določiti nedeljive upodobitve in njihove preslikave. Težava pa je, da je za večino algeber to pretežka naloga. Problem lahko poenostavimo tako, da se osredotočimo na klasifikacijo generičnih upodobitev. Če želimo narediti to, moramo parametrizirati module z raznoterostjo in določiti njene nerazcepne komponente. V tem magistrskem delu določim nerazcepne komponente raznoterosti upodobitev za razred algeber, ki vsebuje vse algebre oblike $k\langle x_1,\dots,x_n\rangle/((x_1,\dots,x_n)^3+(\sum_i x_i^2))$. V tem primeru so nerazcepne komponente določene z dimenzijami radikalov in podstavkov njihovih generičnih elementov. To pokažemo tako, da najprej poiščemo pokritje raznoterosti upodobitev s takimi nerazcepnimi podraznoterostmi in nato izločimo vse tiste podraznoterosti, ki niso maksimalne za vsebovanost.

Language:Slovenian
Keywords:generična teorija upodobitev, nerazcepne komponente raznoterosti, vektorski svežnji, upodobitven tip
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-160261 This link opens in a new window
UDC:512.7
COBISS.SI-ID:206082051 This link opens in a new window
Publication date in RUL:24.08.2024
Views:192
Downloads:35
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Irreducible components of varieties of representations of finite dimensional algebras
Abstract:
The main goal of representation theory is to understand all representations of a given algebra and their homomorphisms. It is enough to classify the indecomposable representations and their homomorphisms for this. However, for most algebras, this seems to be a hopeless task. Because of that, we would like to simplify the problem and focus on understanding just the generic representations. To do so we need to parametrise the representations with a variety and determine its irreducible components. In this thesis, we determine the components for varieties of representations of a class of finite dimensional algebras over an algebraically closed field, that contains all algebras of the form $k\langle x_1,\dots,x_n\rangle/((x_1,\dots,x_n)^3+(\sum_i x_i^2))$. The irreducible components in this case are determined by dimensions of radicals and socles of their generic elements. To show this we first find a cover of the variety of representations using such irreducible subvarieties and then filter out the ones that are not maximal.

Keywords:generic representation theory, irreducible components of varieties, vector bundles, representation type

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back