Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Analysis of eigenvalue condition numbers for a class of randomized numerical methods for singular matrix pencils
ID
Kressner, Daniel
(
Author
),
ID
Plestenjak, Bor
(
Author
)
PDF - Presentation file,
Download
(643,79 KB)
MD5: 17758642606697F13B77DFA5F65651A6
URL - Source URL, Visit
https://link.springer.com/article/10.1007/s10543-024-01033-w
Image galllery
Abstract
The numerical solution of the generalized eigenvalue problem for a singular matrix pencil is challenging due to the discontinuity of its eigenvalues. Classically, such problems are addressed by first extracting the regular part through the staircase form and then applying a standard solver, such as the QZ algorithm, to that regular part. Recently, several novel approaches have been proposed to transform the singular pencil into a regular pencil by relatively simple randomized modifications. In this work, we analyze three such methods by Hochstenbach, Mehl, and Plestenjak that modify, project, or augment the pencil using random matrices. All three methods rely on the normal rank and do not alter the finite eigenvalues of the original pencil. We show that the eigenvalue condition numbers of the transformed pencils are unlikely to be much larger than the $\delta$-weak eigenvalue condition numbers, introduced by Lotz and Noferini, of the original pencil. This not only indicates favorable numerical stability but also reconfirms that these condition numbers are a reliable criterion for detecting simple finite eigenvalues. We also provide evidence that, from a numerical stability perspective, the use of complex instead of real random matrices is preferable even for real singular matrix pencils and real eigenvalues. As a side result, we provide sharp left tail bounds for a product of two independent random variables distributed with the generalized beta distribution of the first kind or Kumaraswamy distribution.
Language:
English
Keywords:
singular pencil
,
singular generalized eigenvalue problem
,
eigenvalue condition number
,
randomized numerical method
,
random matrices
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Year:
2024
Number of pages:
27 str.
Numbering:
Vol. 64, iss. 3, art. 32
PID:
20.500.12556/RUL-160120
UDC:
519.6
ISSN on article:
0006-3835
DOI:
10.1007/s10543-024-01033-w
COBISS.SI-ID:
204416003
Publication date in RUL:
21.08.2024
Views:
166
Downloads:
17
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
BIT numerical mathematics
Shortened title:
BIT
Publisher:
Springer Nature, BIT Foundation
ISSN:
0006-3835
COBISS.SI-ID:
25103872
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Secondary language
Language:
Slovenian
Keywords:
singularni šop
,
singularni posplošeni problem lastnih vrednosti
,
pogojenostno število lastne vrednosti
,
verjetnostna numerična metoda
,
naključne matrike
Projects
Funder:
SNSF - Swiss National Science Foundation
Funding programme:
Projects
Project number:
192049
Name:
Probabilistic methods for joint and singular eigenvalue problems
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
N1-0154
Name:
Verjetnostne metode za skupne in singularne probleme lastnih vrednosti
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
P1-0294
Name:
Računsko intenzivne metode v teoretičnem računalništvu, diskretni matematiki, kombinatorični optimizaciji ter numerični analizi in algebri z uporabo v naravoslovju in družboslovju
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back