izpis_h1_title_alt

Uporaba velikih jezikovnih modelov za generiranje dokumentacije iz izvorne kode
ID Samardžija, Robert (Author), ID Bosnić, Zoran (Mentor) More about this mentor... This link opens in a new window, ID Radin, Dragoslav (Comentor)

.pdfPDF - Presentation file, Download (627,01 KB)
MD5: D5BDAFC00915FC269B04B094E2EBB802

Abstract
Področje generativne umetne inteligence je v letu 2022 v tehnološko stroko in tudi v ostale stroke prineslo revolucijo. Razcvet na področju osnovnih modelov je omogočil ustvarjanje realističnih in kompleksnih vsebin različnih vrst ter odprl vrata novim pristopom na področjih ustvarjalnosti, strojnega prevajanja in odločanja. V diplomski nalogi raziščemo uporabo velikih jezikovnih modelov za generiranje dokumentacije iz izvorne kode. Ogledamo si pristope inženiringa poizvedb, zasnujemo in razvijemo prototip generatorja ter ocenimo zmogljivost velikih jezikovnih modelov na zastavljeni nalogi. Izpostavimo težavo narave delovanja jezikovnih modelov, ki lahko pri različnih izvajanjih ustvarijo nezaželene razlike v rezultatih, in problem prilagajanja naše metode na delovanje specifičnega jezikovnega modela. Delo zaključimo z ugotovitvijo, da implementacija naše metode zadovoljuje potrebe podjetja DevRev in predstavlja alternativo obstoječim generatorjem dokumentacije, ki ne uporabljajo jezikovnih modelov. Predstavimo možne izboljšave, ki vključujejo uporabo jezikovnih modelov iz različnih družin in integracijo prototipa v storitev Airdrop platforme DevRev.

Language:Slovenian
Keywords:veliki jezikovni modeli, generatorji dokumentacije, inženiring poizvedb, GPT
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-160004 This link opens in a new window
COBISS.SI-ID:207569923 This link opens in a new window
Publication date in RUL:07.08.2024
Views:319
Downloads:73
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Use of large language models for generating source code documentation
Abstract:
The field of generative artificial intelligence brought about a revolution in technology and other disciplines in the year 2022. The development and incredible success of foundation models enabled the creation of realistic and complex content of various kinds and introduced new approaches in creativity, machine translation and decision-making. In our work, we explore the use of large language models for generating source code documentation. We examine prompt engineering approaches, design and develop a prototype of the generator and evaluate the performance of large language models on the set task. We highlight the challenging nature of language models, whose output can undesirably differ between runs, and the problem of tuning our method to one specific language model. The work concludes with the finding that the implementation of our method satisfies the needs of DevRev and represents an alternative to existing documentation generators that do not use language models. We also present possible improvements that include the use of language models from different families and the integration of our prototype into DevRev's Airdrop service.

Keywords:large language models, documentation generators, prompt engineering, GPT

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back