izpis_h1_title_alt

Barvanja spletov in Goeritzeva matrika : m
ID Bogataj, Lucija (Author), ID Strle, Sašo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (695,23 KB)
MD5: 3DF5F1F90B660C2E5D0BF674F0938EF9
.pdfPDF - Appendix, Download (152,33 KB)
MD5: 5664EFFEE1D1584FF277D863C651AB70
.pdfPDF - Appendix, Download (10,31 KB)
MD5: 410F1C4566400978E0162D0BEEA04D5E
This document has even more files. Complete list of files is available below.

Abstract
V magistrskem delu obravnavamo vozle in splete v prostoru ter njihove diagrame. Na diagrame spletov ob izbrani Abelovi grupi $A$ vpeljemo Foxova barvanja, Dehnova barvanja, šahovsko senčenje in Goeritzevo matriko. Pokažemo povezave med temi objekti. Grupe Dehnovih barvanj različnih diagramov istega spleta v prostoru so med seboj izomorfne. Prav tako grupe Foxovih barvanj. Pokažemo, kakšna je struktura grupe Foxovih barvanj in struktura grupe Dehnovih barvanj. Obe sta izomorfni direktni vsoti jedra Goeritzeve matrike in ustreznega števila ponovitev grupe $A$, le da je grupa Dehnovih barvanj za en $A$ razsežnejša od grupe Foxovih barvanj.

Language:Slovenian
Keywords:vozel, splet, Goeritzeva matrika, Foxovo barvanje, Dehnovo barvanje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-159728 This link opens in a new window
COBISS.SI-ID:202283011 This link opens in a new window
Publication date in RUL:20.07.2024
Views:238
Downloads:79
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Link colorings and the Goeritz matrix
Abstract:
In the master's thesis, we discuss knots and links in space and their diagrams. Fox colorings, Dehn colorings, checkerboard shading, and Goeritz matrix are applied to link diagrams considering the selected Abelian group $A$. We show the connections between these objects. Groups of Dehn colorings of different diagrams of the same link in space are mutually isomorphic. Also groups of Fox colorings. We show the structure of the group of Fox colorings and the structure of the group of Dehn colorings. Both are isomorphic to the direct sum of the kernel of the Goeritz matrix and an appropriate number of copies of the group $A$, except that the group of Dehn colorings contains one more copy of $A$ than the group of Fox colorings.

Keywords:knot, link, Goeritz matrix, Fox coloring, Dehn coloring

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Files

Loading...

Back