Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Barvanja spletov in Goeritzeva matrika : m
ID
Bogataj, Lucija
(
Author
),
ID
Strle, Sašo
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(695,23 KB)
MD5: 3DF5F1F90B660C2E5D0BF674F0938EF9
PDF - Appendix,
Download
(152,33 KB)
MD5: 5664EFFEE1D1584FF277D863C651AB70
PDF - Appendix,
Download
(10,31 KB)
MD5: 410F1C4566400978E0162D0BEEA04D5E
This document has even more files. Complete list of files is available
below
.
Image galllery
Abstract
V magistrskem delu obravnavamo vozle in splete v prostoru ter njihove diagrame. Na diagrame spletov ob izbrani Abelovi grupi $A$ vpeljemo Foxova barvanja, Dehnova barvanja, šahovsko senčenje in Goeritzevo matriko. Pokažemo povezave med temi objekti. Grupe Dehnovih barvanj različnih diagramov istega spleta v prostoru so med seboj izomorfne. Prav tako grupe Foxovih barvanj. Pokažemo, kakšna je struktura grupe Foxovih barvanj in struktura grupe Dehnovih barvanj. Obe sta izomorfni direktni vsoti jedra Goeritzeve matrike in ustreznega števila ponovitev grupe $A$, le da je grupa Dehnovih barvanj za en $A$ razsežnejša od grupe Foxovih barvanj.
Language:
Slovenian
Keywords:
vozel
,
splet
,
Goeritzeva matrika
,
Foxovo barvanje
,
Dehnovo barvanje
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2024
PID:
20.500.12556/RUL-159728
COBISS.SI-ID:
202283011
Publication date in RUL:
20.07.2024
Views:
238
Downloads:
79
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Link colorings and the Goeritz matrix
Abstract:
In the master's thesis, we discuss knots and links in space and their diagrams. Fox colorings, Dehn colorings, checkerboard shading, and Goeritz matrix are applied to link diagrams considering the selected Abelian group $A$. We show the connections between these objects. Groups of Dehn colorings of different diagrams of the same link in space are mutually isomorphic. Also groups of Fox colorings. We show the structure of the group of Fox colorings and the structure of the group of Dehn colorings. Both are isomorphic to the direct sum of the kernel of the Goeritz matrix and an appropriate number of copies of the group $A$, except that the group of Dehn colorings contains one more copy of $A$ than the group of Fox colorings.
Keywords:
knot
,
link
,
Goeritz matrix
,
Fox coloring
,
Dehn coloring
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Files
Loading...
Back