izpis_h1_title_alt

Avtomatsko ocenjevanje težavnosti taktičnih šahovskih problemov
ID Horvat, Matej (Author), ID Guid, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,48 MB)
MD5: DAF4E1BCCDAA029CA15F5B138617ECBF

Abstract
Šahovska taktika ima ključno vlogo pri igranju šahovskih partij, kljub njeni pomembnosti pa je v obstoječi literaturi opazna vrzel glede samodejnih metod za ocenjevanje težavnosti taktičnih šahovskih problemov. S tem magistrskim delom poskušamo to vrzel zapolniti z razvojem pristopa, ki z združitvijo naprednih tehnik umetne inteligence, algoritmov strojnega učenja in našega znanja o šahu dovolj natančno napove težavnost taktičnih problemov. V ta namen smo uporabili hevristične iskalne algoritme za analizo prostora stanj problema. S pomočjo najboljšega odprtokodnega šahovskega motorja gradimo smiselno iskalno drevo, ki simulira človeški pristop reševanja problemov. Poleg drevesa gradimo značilke s prepoznavanjem širokega nabora strateških in taktičnih šahovskih motivov. Za učenje modela smo uporabili velik nabor problemov z ustaljenimi ocenami težavnosti s šahovske platforme Lichess. Analizirali smo uspešnost modela pri uporabi različnih skupin značilk in dosegli globlji vpogled v dejavnike težavnosti v taktičnih šahovskih problemih. Naš model je pokazal dovolj dobro točnost za uporabo v praksi, npr. za pomoč pri izbiri primerno težkih problemov za personaliziran šahovski trening ali za analizo preteklih iger, kjer ocenjujemo težavnost pozicij, pri katerih je igralec storil taktično napako.

Language:Slovenian
Keywords:ocenjevanje težavnosti, človeško reševanje problemov, hevristično preiskovanje, iskalna drevesa, strojno učenje, šah, šahovski taktični problemi
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-159723 This link opens in a new window
COBISS.SI-ID:203981059 This link opens in a new window
Publication date in RUL:19.07.2024
Views:303
Downloads:90
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic estimation of the difficulty of chess tactical problems
Abstract:
Chess tactics play a crucial role in chess games. Still, despite their importance, there is a gap in the existing literature regarding automatic methods for estimating the difficulty of tactical chess problems. In this master thesis, we aim to fill this gap by developing an approach that combines advanced artificial intelligence techniques, machine learning algorithms, and our chess knowledge to predict the difficulty of tactical chess problems with sufficient accuracy. To achieve this, we used heuristic search algorithms to analyze the state space of the problem. Using the state-of-the-art open-source chess engine, we build a meaningful search tree that simulates a human approach to problem-solving. In addition to the meaningful tree, we extracted features by identifying a wide range of strategic and tactical chess motifs. To train the model, we used a large problem set with established difficulty ratings from the chess platform Lichess. We analyzed the model's performance using different feature sets and gained a deeper insight into the difficulty factors in tactical chess problems. Our model has shown good enough accuracy to be used in practical applications, e.g. to help select suitably difficult problems for personalized chess training, or to analyze past games to estimate the difficulty of positions where a player has made a tactical error.

Keywords:difficulty estimation, human problem solving, heuristic search, search trees, machine learning, chess, tactical chess problems

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back