izpis_h1_title_alt

Reševanje problema geometrijskega 0/1-nahrbtnika
ID Škrbec, Nejc (Author), ID Fürst, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,76 MB)
MD5: E6F0188A67F753B0405EAB026B665262

Abstract
V diplomski nalogi obravnavamo problem geometrijskega 0/1-nahrbtnika. Cilj tega NP-težkega problema je iskanje optimalne zapolnjenosti pravokotnih vsebnikov z naborom predmetov različnih velikosti. V raziskavi smo uporabili več determinističnih in stohastičnih pristopov za reševanje tega problema. Implementirali in testirali smo strategijo najboljšega prileganja, konstruktivni hevristični algoritem in hevristiko skupnega obsega. Zmogljivost teh metod smo izboljšali z uporabo globalnih optimizacijskih algoritmov, kot so simulirano ohlajanje in genetski algoritem. Izkazalo se je, da je izmed vseh algoritmov vstavljanja najbolj uspešna hevristika skupnega obsega, največje izboljšanje rešitev pa je pri vseh algoritmih vstavljanja prinesla uporaba v kombinaciji z genetskim algoritmom.

Language:Slovenian
Keywords:algoritmi, metahevristika, genetski algoritem, simulirano ohlajanje, optimizacija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-159389 This link opens in a new window
COBISS.SI-ID:202276099 This link opens in a new window
Publication date in RUL:09.07.2024
Views:340
Downloads:86
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Solving the geometric knapsack problem
Abstract:
This thesis addresses the geometric 0/1 knapsack problem. The goal of this NP-hard problem is finding the optimal packing of a rectangular container with a set of items of different sizes. We employed and tested various deterministic and stochastic approaches to solve this problem, including the best-fit-first strategy, the constructive heuristic algorithm, and the common perimeter heuristic. Additionally, we improved the performance of the insertion algorithms using global optimization algorithms such as simulated annealing and genetic algorithms. Among the employed insertion algorithms, the common perimeter heuristic performed the best. For all insertion algorithms, the greatest improvement was attained by using them in combination with the genetic algorithm.

Keywords:algorithms, metaheuristics, genetic algorithm, simulated annealing, optimization

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back