izpis_h1_title_alt

Pristopi za avtomatizirano analizo metabolnih modelov na nivoju genoma
ID Škof, Živa (Author), ID Moškon, Miha (Mentor) More about this mentor... This link opens in a new window, ID Režen, Tadeja (Comentor)

.pdfPDF - Presentation file, Download (952,76 KB)
MD5: 121C28EC32515E17F08BE66A10CBD775

Abstract
Modeliranje metabolizma na nivoju genoma (angl. genome-scale metabolic modelling, GEM) je pristop, ki povezuje podatke različnih visokozmogljivih tehnologij zajemanja podatkov z modeliranjem in omogoča celovito razumevanje bioloških sistemov. To nam pomaga pri razumevanju kompleksnih bolezni, med katere spada hepatocelularni karcinom (angl. hepatocellular carcinoma, HCC), ki je najpogostejša oblika jetrnega raka in za katerim so oboleli preučevani pacienti. Za vsakega pacienta smo z algoritmi družine GIMME in iMAT rekonstruirali pare modelov tumor in netumor. Pri vrednotenju, katera metoda ekstrakcije modelov (angl. model extraction method, MEM) se je z našimi podatki najbolje izkazala, smo z večimi metodami in pristopi analizirali razlike med modeloma znotraj posameznega para. Na podlagi izvedenih analiz smo ugotovili, da ne moremo trditi, da smo našli algoritem MEM za ekstrakcijo kontekstno specifičnih modelov iz GEM-ov, za katerega bi lahko ugotovili, da je najbolj primeren za vsesplošno uporabo. Na preučevanih podatkih sta se najbolje izkazala algoritma iMAT in tINIT.

Language:Slovenian
Keywords:Metabolni modeli na nivoju genoma, visokozmogljive tehnologije zajemanja podatkov, metode ekstrakcije modelov, GIMME, iMAT, tINIT, Hepatocelularni karcinom
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-159256 This link opens in a new window
COBISS.SI-ID:200780547 This link opens in a new window
Publication date in RUL:04.07.2024
Views:278
Downloads:60
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Towards automated analysis of genome-scale metabolic models
Abstract:
Genome-scale metabolic modelling (GEM) is an approach that integrates data from different high-throughput sequencing techniques with modelling to provide a comprehensive understanding of biological systems. It helps us understand complex diseases such as Hepatocellular carcinoma (HCC), the most common form of liver cancer affecting also the patients studied. For each patient, we reconstructed a pair of models, namely a tumour model and a non-tumour model - using different algorithms from GIMME and iMAT families. We used a variety of methods and approaches to analyse the differences between the models within each pair to determine which model extraction method (MEM) performed best with our data. Based on the conducted analyses, we have concluded that we cannot claim to have found a MEM for extracting context-specific models from GEMs that we could conclude is the most suitable for general use. The iMAT and tINIT algorithms performed best on the data studied.

Keywords:Genome-scale metabolic models, High-throughput sequencing techniques, Model extraction methods, GIMME, iMAT, tINIT, Hepatocellular carcinoma

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back