Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Homotopska razdalja : delo diplomskega seminarja
ID
Zaletelj, Alja
(
Author
),
ID
Pavešić, Petar
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,04 MB)
MD5: F640896BA3F2D3EC1324937F249B141C
Image galllery
Abstract
V homotopski teoriji enačimo preslikave, ki so med seboj homotopne. Za poljubni preslikavi iz
X
v
Y
iščemo podprostore
X
, na katerih sta homotopni. Najmanjše število takih podprostorov, ki domeno
X
pokrijejo, razglasimo za njuno homotopsko razdaljo. Z uporabo lastnosti homotopije in razširjanjem pokritij normalnih prostorov dokažemo, da je homotopska razdalja na njih metrika. Homotopsko razdaljo povežemo s Lusterik-Schnirelmannovo kategorijo in topološko kompleksnostjo. Povezave med njimi nam poenostavijo dokaze njihovih lastnosti in jih predstavijo v novi luči.
Language:
Slovenian
Keywords:
homotopija
,
homotopska razdalja
,
homotopska ekvivalenca
,
trikotniška neenakost
,
Lusternik-Schnirelmannova kategorija
,
kategorična množica
,
topološka kompleksnost
,
vlaknenje
,
prerezna kategorija
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2024
PID:
20.500.12556/RUL-159199
UDC:
515.1
COBISS.SI-ID:
200520195
Publication date in RUL:
03.07.2024
Views:
370
Downloads:
61
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ZALETELJ, Alja, 2024,
Homotopska razdalja : delo diplomskega seminarja
[online]. Bachelor’s thesis. [Accessed 13 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=159199
Copy citation
Share:
Secondary language
Language:
English
Title:
Homotopic distance
Abstract:
In homotopy theory we identify maps that are homotopic. For two mappings from
X
to
Y
we look for subspaces of
X
on which they are homotopic. The minimum number of such subspaces covering the domain
X
is declared to be their homotopic distance. Using properties of homotopy and extending the covers of normal spaces, we prove that the homotopic distance on them is a metric. We connect homotopic distance with Lusternik-Schnirelmann category and topological complexity. The links between them simplify the proofs of their properties and present them in a new light.
Keywords:
homotopy
,
homotopic distance
,
homotopy equivalence
,
triangular inequality
,
Lusternik-Schnirelmann category
,
categorical set
,
topological complexity
,
fibration
,
sectional category
Similar documents
Similar works from RUL:
Temeljne razlike računovodstva v javnem in zasebnem sektorju
Računovodski servis - s.p. Ali d.o.o.
Računovodska analiza podjetja Elbi d.o.o.
Notranja revizija v javnem zavodu
Računovodska analiza podjetja Sandvik, d. o. o.
Similar works from other Slovenian collections:
Kritična analiza letnega poročila
Sestava in analiza letnega poročila
Analiza letnega poročila gospodarske družbe
Sestava in analiza letnega poročila
Sestava in analiza letnega poročila podjetja
Back