izpis_h1_title_alt

Krmiljenje prenosnika toplote z uporabo strojnega učenja
ID Strehar, Ambrož (Author), ID Kozjek, Dominik (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,85 MB)
MD5: AB4994B71761B374585837D665D449B0

Abstract
V diplomski nalogi smo obravnavali problem krmiljenja temperature v prenosniku toplote, ki se uporablja v farmacevtski industriji. Obstoječi krmilni sistem temelji na tradicionalnih metodah in ima številne možnosti za izboljšave. Metodologija vključuje strojno in programsko opremo, kjer sta ključni metodi napovedno krmiljenje in uporaba transparentne tehnike strojnega učenja – odločitvenega drevesa, ki se jo uporabi za generiranje napovednega modela za potrebe napovednega krmiljenja. Z rezultati smo dokazali, kako s pomočjo zbranih podatkov in uporabo strojnega učenja naučiti napovedni model in ga transparentno integrirati v krmilni sistem, ki temelji na programabilnem logičnem krmilniku.

Language:Slovenian
Keywords:krmiljenje, programirljivi logični krmilniki, strojno učenje, napovedno krmiljenje, prenosnik toplote
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[A. Strehar]
Year:2024
Number of pages:XX, 50 str.
PID:20.500.12556/RUL-158918 This link opens in a new window
UDC:536:629.062:661.12:004.85(043.2)
COBISS.SI-ID:202757123 This link opens in a new window
Publication date in RUL:22.06.2024
Views:412
Downloads:156
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Controlling a heat exchanger using machine learning
Abstract:
In this thesis, we address the problem of temperature control in a heat exchanger used in the pharmaceutical industry. The existing control system is based on traditional methods and has many possibilities for improvement. The methodology includes hardware and software, where the key methods are predictive control and the use of a transparent machine learning technique - a decision tree, which is used to generate a predictive model for predictive control purposes. The results demonstrate how to learn a predictive model using the collected data and machine learning algorithm and transparently integrate the trained predictive model into a control system based on a programmable logic controller.

Keywords:control, programmable logic controllers, machine learning, predictive control, heat exchanger

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back