Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Grobo-zrnato modeliranje monoklonskih protiteles in njihova lastna nihanja
ID
Perovnik, Simon
(
Author
),
ID
Ravnik, Miha
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(19,08 MB)
MD5: FE1AD681D209C8EFDD0DD82DD0EA1F31
Image galllery
Abstract
Grobo-zrnati modeli monoklonskih protiteles so pogosto uporabljeni za
in silico
opis statike in dinamike. V magistrskem delu raziščemo dva pristopa konstrukcije grobo-zrnatih modelov - algoritem strojnega učenja gručenje k-means in metodo bistvene dinamike. Z metodama reproduciramo grobo-zrnate modele, ki so kvalitativno podobni uveljavljenim 3, 6 in 12-delčnim grobo-zrnatim modelom proteinov, s čimer pokažemo smiselnost njune uporabe. V drugem delu naloge lastne nihajne načine, ki smo jih izračunali za uporabo metode bistvene dinamike, koreliramo s hitrostjo agregacije, kvalifikatorjem proteinskih formulacij in z vsoto amplitud nihanj v CDR zankah. Rezultati iskanja linearnih korelacij kažejo na verjetno povezanost lastnih nihajnih načinov in mehanizmov agregacije. V tem kontekstu prepoznamo dva nihajna načina, pri katerih opazimo znatnejše korelacije.
Language:
Slovenian
Keywords:
proteini
,
modeliranje
,
grobo-zrnati modeli
,
gručenje k-means
,
metoda bistvene dinamike
,
monoklonska protitelesa
,
lastni nihajni načini
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2024
PID:
20.500.12556/RUL-158739
COBISS.SI-ID:
199423491
Publication date in RUL:
20.06.2024
Views:
376
Downloads:
111
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PEROVNIK, Simon, 2024,
Grobo-zrnato modeliranje monoklonskih protiteles in njihova lastna nihanja
[online]. Master’s thesis. [Accessed 26 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=158739
Copy citation
Share:
Secondary language
Language:
English
Title:
Coarse-grain modelling of monoclocanal antibodies and their vibration modes
Abstract:
Coarse-grained models of monoclonal antibodies are often used for
in silico
description of statics and dynamics. In this thesis, we investigate two approaches to the construction of coarse-grained models - the k-means machine learning algorithm and the essential dynamics method. We reproduce coarse-grained models of proteins that are qualitatively similar to established 3-, 6-, and 12-particle coarse-grained models using these methods, demonstrating the validity of their application. In the second part of the thesis, we correlate the normal modes computed using the essential dynamics method with the aggregation rate, a critical quality attribute of proteins and with the sum of amplitudes in CDR regions. The results of the linear correlation indicate a likely correlation between the normal modes and the aggregation mechanisms. In this context, we identify two oscillatory modes where more significant correlations are observed.
Keywords:
proteins
,
modeling
,
coarse-grained models
,
k-means clustering
,
essential dynamics method
,
monoclonal antibodies
,
normal modes
Similar documents
Similar works from RUL:
Klub vrhniških študentov kot preventiva mladim na Vrhniki?
Ekonomski in pravni vidiki sponzorskih pogodb na področju športa
Vpliv dejavnikov na določanje vrednosti sponzorskih pogodb nogometnih klubov v Sloveniji
Vizualizacija podatkov LiDAR na spletu
Vizualizacija podatkov v javaskriptu
Similar works from other Slovenian collections:
Pridobivanje sponzorskih sredstev za festival
Analiza in predstavitev podatkov z uporabo infografik na primeru rokometnih evropskih prvenstev
Komunikacijska strategija študentske organizacije - primer Kluba ormoških študentov
Kompetenčni profil na Klubu študentov Kranj
Management v javnem zavodu
Back