izpis_h1_title_alt

Hibridna metoda za razvoj prepričljivega vedenja agentov v videoigrah
ID Simonič, Arne (Author), ID Pesek, Matevž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,82 MB)
MD5: 3968D4AFBDB347D5B31C0C66A414E453

Abstract
V industriji računalniških iger smo bili v zadnjem desetletju priča napredkom v računalniški grafiki, zvočni produkciji in količini uporabniških vsebin, za razvoj vedenja agentov v video igrah pa se še vedno uporabljajo tradicionalne metode, ki so v industriji prisotne že od samega začetka. Za ohranjanje rasti industrije in zadovoljstva končnih uporabnikov morajo v prihodnosti inovacije prodreti tudi na druga področja znotraj industrije. Naslednje generacije video iger ne bodo več zaznamovale višje resolucije tekstur, temveč realistično avtonomno vedenje agentov, ki bodo zmožni učenja in prilagajanja dani situaciji. V magistrskem delu predstavimo novo hibridno metodo za razvoj prepričljivega vedenja agentov v video igrah in jo primerjamo z obstoječimi pristopi. Metodo smo osnovali na podlagi vedenjskih dreves, končnih avtomatov in metode spodbujevalnega učenja Q-learning. V predstavljeni hibridni metodi združimo prednosti naštetih pristopov in hkrati odpravimo nekatere slabosti. Prepričljivost nove metode ovrednotimo s pomočjo vprašalnika, njeno učinkovitost in ustreznost pa primerjamo z uveljavljenimi pristopi razvoja vedenja inteligentnih agentov.

Language:Slovenian
Keywords:računalniške igre, inteligentni agenti, prepričljivost vedenja, spodbujevalno učenje, odločitvena drevesa, končni avtomati
Work type:Master's thesis
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-158698 This link opens in a new window
COBISS.SI-ID:201583363 This link opens in a new window
Publication date in RUL:19.06.2024
Views:326
Downloads:124
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Hybrid method for implementing believable agent behaviour in video games
Abstract:
Over the last decade, the video game industry has witnessed advancements in computer graphics, sound production and the quantitiy of available content. However, the development of agent behaviour in video games still relies on traditional methods that have been present in the industry since its very inception. To sustain the industry's growth and meet end-user satisfaction requirements in the future, innovations must also be introduced in other areas within the industry. The next generation of video games will no longer be marked by higher texture resolutions, but by realistic autonomous behaviour of agents, capable of learning and adapting to given situations. In this master's thesis we present a new hybrid method for developing believable agent behaviour in video games and compare it with existing approaches. We based the method on behaviour trees, finite state machines, and the reinforcement learning method Q-learning. The presented hybrid method combines the advantages of the listed approaches while addressing some of their weaknesses. We evaluate the behaviour believability of the new method using a questionnaire, and compare its efficiency and suitability with established approaches to developing intelligent agent behaviour.

Keywords:video games, intelligent agents, behaviour believability, reinforcement learning, decision trees, finite-state machines

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back