izpis_h1_title_alt

Hkratna lokalizacija in gradnja zemljevida z uporabo algoritma razširjenega Kalmanovega filtra in neznano asociacijo
ID Štefanič Bogolin, Daniel (Author), ID Klančar, Gregor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,47 MB)
MD5: 70204E5EE004DF0B6FBF30EB1C5C64BF

Abstract
V tem magistrskem delu je predstavljena izvedba algoritma za sočasno lokalizacijo in kartiranje okolice s pomočjo simulacije. Opisana so vsebinska ozadja in izpeljave, ki bralca najprej seznanijo s teoretičnim ozadjem te tematike. Predstavljena je formulacija dejanskega problema robota, ki mora v neznanem okolju zajemati podatke, jih procesirati in s pomočjo le teh popraviti domnevo o svojem položaju ter okolici. Celoten sistem je bil razvit v programskem jeziku Python s pomočjo knjižnic za matematične operacije, obdelavo slik in animacijo robota, ki ima kinematični model diferencialnega pogona. Uporabljen je bil algoritem, ki temelji na osnovi razširjenega Kalmanovega filtra. Na začetku je bila implementirana različica z znano asociacijo, ki sem jo v nadaljevanju nagradil s pogojem za preverjanje Mehalanobisove razdalje in tako dodelal algoritem za lokalizacijo in kartiranje okolice, da deluje tudi v situacijah, kjer se mora robot sam odločiti ali je novo značilko zaznal prvič ob predpostavki neznane asociacije. Za zajemanje podatkov iz okolice je bil simuliran laserski merilnik razdalje in kota, ki je omogočal zajemanje oblaka točk. Te podatki so bili nato uporabljeni za določanje robov, premic in oglišč prostora ter predmetov. Glavni rezultati dela predstavljajo temeljito analizo delovanja obeh algoritmov za sprotno določanje vrednosti vektorja stanj in kovariančne matrike sistema s pomočjo meritev regulirnih veličin ter okolice, ki vsebujejo šum. Končni produkt je pridobljeno simulacijsko okolje, ki je zelo uporabno za testiranje obstoječih sistemov avtonomne vožnje, kot tudi za razvoj novih izboljšav na tem področju.

Language:Slovenian
Keywords:hkratna lokalizacija in gradnja zemljevida, razširjen Kalmanov filter, simulator, Mehalanobisova razdalja
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-158673 This link opens in a new window
COBISS.SI-ID:199531779 This link opens in a new window
Publication date in RUL:19.06.2024
Views:271
Downloads:42
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Simultaneous localization and map building using an extended Kalman filter algorithm and unknown association
Abstract:
This master's thesis presents the implementation of the algorithm for simultaneous localization and mapping through modelling in a simulated environment. The theoretical background and derivations are described to acquaint the reader with the theoretical foundations of this topic. Introduced is the formulation of the actual problem of a robot that must capture data in an unknown environment, process it, and use this information to correct its belief about its position and surroundings. The entire system was developed in the Python programming language using libraries for mathematical operations, image processing and animation of a mobile robot, which has the kinematic model of a differential drive. The algorithm used is based on the extended Kalman filter. Initially the program with known association was implemented, which was subsequently enhanced with a condition to check the Mahalanobis distance, thus refining the localization and mapping algorithm to work even in situations where the robot must decide whether it has detected a new feature for the first time under the assumption of unknown association. A simulated laser range and bearing sensor was used to capture data from the environment, enabling the creation of point clouds. These data sets were then used to determine the edges, lines and corners of the room and objects. The main results of the work include a fundamental analysis of the operation of both algorithms for real-time estimation of the state vector and covariance matrix using noisy measurements of control variables and the environment. The final product is the obtained simulation environment, which is very useful for testing existing autonomous driving systems as well as for developing new improvements in this field.

Keywords:simultaneous localization and mapping, extended Kalman filter, simulator, Mahalanobis distance

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back