izpis_h1_title_alt

Sinteza in funkcionalizacija obloge na osnovi amorfnega silicijevega dioksida na površini magnetnih nanodelcev
ID Vesel, Žiga (Author), ID Kocbek, Petra (Mentor) More about this mentor... This link opens in a new window, ID Kralj, Slavko (Comentor)

.pdfPDF - Presentation file. The content of the document unavailable until 14.06.2025.
MD5: BB5D89DB66CE95658133BEFAF134E067

Abstract
Sledi izkoriščanja nanotehnologije, četudi nezavednega, lahko zasledimo vseskozi človeško zgodovino. Nanotehnologija je ena izmed pomembnejših gonilnih sil napredka v medicini in farmaciji tudi danes. Razvoj na področju nanotehnologije omogoča nove načine ter izboljšuje dosedanje pristope zdravljenja bolezni. V okviru nanotehnologije razvijajo nove vrste nanodelcev, ki izkazujejo edinstvene lastnosti. Superparamagnetizem je ena izmed takšnih lastnosti, ki jo lahko izkazujejo delci nekaterih železovih oksidov velikosti manjše od 15 nm. Omenjena lastnost je ključna za njihovo uporabo v razvoju dostavnih sistemov s prirejenim sproščanjem zdravilnih učinkovin. Magnetne nanodelce lahko uporabimo kot nosilce zdravilnih učinkovin za ciljano zdravljenje ali pa jih za zdravljenje uporabimo same. V okviru magistrske naloge smo površine pripravljenih nanoskupkov magnetnih nanodelcev oblagali z amorfnim silicijevim dioksidom. Sintetizirali smo jo po Stöberjevem postopku, ki je enostaven in obvladljiv. Nastala obloga iz silicijevega dioksida omogoča nadaljnjo funkcionalizacijo nanoskupkov magnetnih nanodelcev. S prilagoditvijo Stöberjevega postopka lahko na površini delcev sintetiziramo tudi mezoporozno oblogo iz silicijevega dioksida, ki izkazuje določene prednosti v razvoju dostavnih sistemov učinkovin. V eksperimentalnem delu smo se osredotočili na sintezo različnih mezoporoznih oblog iz silicijevega dioksida. Preverjali smo vplive različnih modifikacij procesa na lastnosti sintetizirane obloge iz silicijevega dioksida, kot so uporaba različne vrste baze, organskega topila in površinsko aktivne snovi. Površino silicijevega dioksida smo funkcionalizirali z aminskimi in karboksilnimi skupinami. Poleg tega smo na površino silicijevega dioksida vezali tudi molekule polietilenglikola, ki dodatno izboljšajo biokompatibilnost delcev ter njihovo koloidno stabilnost. Nanoskupke magnetnih nanodelcev smo uspešno obložili s silicijevim dioksidom, kar smo potrdili s presevno elektronsko mikroskopijo ter z merjenjem hidrodinamske velikosti delcev. Obloga iz silicijevega dioksida je vsebovala radialno usmerjene pore v šestih od zastavljenih osmih oblog. V preostalih dveh procesih, radialno usmerjene pore v oblogi iz silicijevega dioksida, niso nastale. Iz obloge iz silicijevega dioksida smo uspešno odstranili amonijev nitrat in oblogo uspešno funkcionalizirali, kar smo potrdili z merjenjem zeta potenciala. Z merjenjem zeta potenciala smo ugotovili, da so suspenzije nanoskupkov magnetnih nanodelcev ustrezno elektrostatsko stabilizirane.

Language:Slovenian
Keywords:Ciljana dostava, funkcionalizacija, nanodelci, oblaganje, silicijev dioksid
Work type:Master's thesis/paper
Organization:FFA - Faculty of Pharmacy
Year:2024
PID:20.500.12556/RUL-158586 This link opens in a new window
Publication date in RUL:16.06.2024
Views:257
Downloads:0
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Synthesis and functionalisation of an amorphous silicon dioxide coating on the surface of magnetic nanoparticles
Abstract:
Throughout human history, traces of nanotechnology exploitation, although subconsciously, have been discernible while the nanotechnology remains a central domain for progress in the fields of medicine and pharmacology nowadays. Today, it continues to shape novel therapeutic approaches and enhance existing ones. Within the realm of nanotechnology, innovative new nanoparticle types with unique properties are evolving. One such property is superparamagnetism, exhibited by particles of certain iron oxides smaller than 15 nm. This property is crucial for their application in developing drug delivery systems, offering precise control over the release of therapeutic agents. Magnetic nanoparticles can be employed as carriers for active pharmaceutical ingredients or utilized as such directly for therapy. In this master's thesis, we have coated the surfaces of prepared magnetic nanoclusters with amorphous silica. The synthesis was achieved using the Stöber method, known for its simplicity and manageability. By adapting the Stöber method, we can synthesize mesoporous silica coatings on particle surfaces, offering distinct advantages in delivery system development. In the experimental part of the master thesis, we focused on the synthesis of various mesoporous silica coatings, investigating the effects of several process modifications on the final silica coating form, including the choice of base, organic solvent, and surfactant. We introduced functional groups onto the silica surface, such as amines and carboxyl groups, via reactions with functional alkoxysilanes. Finally, we attached polyethylene glycol molecules to the silica surface to further enhance particle biocompatibility and colloidal stability. By using a transmission electron microscope, we determined the coating of nanoclusters with mesoporous silica was successful. We confirmed it furthermore by measuring the hydrodynamic size of particles before and after coating with silica. We successfully coated the nanoclusters with mesoporous silica with radially aligned pores in six of eight set coatings. Silica coating of the remaining two syntheses did not include the desired radially aligned pores, furthermore, the nanoclusters formed aggregates. We confirmed the removal of ammonium nitrate from the silica coating and functionalization of silica coating by measuring the zeta potential of suspensions. Zeta potential also indicated whether the suspensions were electrostatically stabilized.

Keywords:Coating, functionalization, nanoparticles, silica, targeted delivery

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back