izpis_h1_title_alt

Stabilizacija in strukturna karakterizacija proteinov iz obvitih vijačnic
ID Satler, Tadej (Author), ID Gradišar, Helena (Mentor) More about this mentor... This link opens in a new window, ID Jerala, Roman (Comentor)

.pdfPDF - Presentation file, Download (9,07 MB)
MD5: 8CCF38A290AACEA57AAFD5A738B9193D
.pdfPDF - Appendix, Download (4,78 MB)
MD5: 57AA35C357A4DA8D5CA8EB161918A4C9

Abstract
Področje oblikovanja proteinov de novo omogoča pripravo novih proteinskih zvitji, ki niso bila nikoli evolucijsko vzorčena. Kljub velikemu napredku na tem področju je še vedno potrebno veliko eksperimentalnega dela, da uspešno pripravimo protein z želeno strukturo in funkcijo. Alternativna strategija načrtovanja proteinov temelji na gradnji proteinov iz modularnih gradnikov, za katere dobro poznamo razmerje med zaporedjem in strukturo. Proteinski origami lahko načrtujemo na osnovi modularnih gradnikov iz obvitih vijačnic. Obliko poliedra definiramo s topološko razporeditvijo paralelnih in/ali antiparalelnih parov obvitih vijačnic, kjer so posamezni peptidni segmenti, glede na osnovna matematična pravila, v natančno določenem vrstnem redu zaporedno nanizani v polipeptidni verigi. Čeprav se je izkazalo, da je strategija načrtovanja proteinskih origamijev robusten pristop k ustvarjanju topološko raznolikih poliedrov, pa zaradi majhnosti in fleksibilnosti teh proteinskih struktur še nismo imeli strukturnih podatkov visoke ločljivosti. V doktorskem delu smo z različnimi pristopi naslovili problem strukturne karakterizacije proteinskih origamijev in uspeli določiti kristalno strukturo trikotnika iz obvitih vijačnic v visoki ločljivosti. Pripravili smo stabilizirane proteine iz obvitih vijačnic v obliki trikotnika, pri čemer smo uporabili stabilizirane variante peptidnih segmentov, hkrati pa smo zmanjšali fleksibilnost proteinskega zvitja z uporabo krajših povezovalnih peptidov, ki povezujejo peptidne segmente. Pokazali smo, da lahko proteine dodatno stabiliziramo tudi s kovalentnim povezovanjem N- in C-koncev, kar smo dosegli tako z uporabo razcepljenih inteinov kot tudi z encimom tirozinazo. Uspešno smo pripravili različne komplekse proteinov iz obvitih vijačnic z nanotelesi in ogrodjem legotelesa, z namenom spodbuditi kristalizacijo proteinov ali povečati velikost in kontrast proteina za strukturno analizo na krio-elektronskem mikroskopu. Za pripravo kompleksov smo uporabili tako znana nanotelesa, ki vežejo obvite vijačnice, kot tudi nanotelesa, katerim smo transplantirali epitop na motiv obvite vijačnice. Pripravili smo modularen sistem za transplantacijo epitopa nanotelesa Nb49 in intratelesa Ib3, ter s pripravo večih različnih proteinskih konstruktov potrdili njuno učinkovitost. Z uporabo stabilnejših peptidnih segmentov, krajših povezovalnih zaporedij ter vključitvijo naravnega homodimernega peptidnega para GCN2, smo pripravili konstrukt trikotnika iz obvitih vijačnic - TRI-4SHbGCN, ki je uspešno kristaliziral in smo mu določili kristalno strukturo. Ta je potrdila načrtovano trikotno obliko, ki ima osrednjo votlino. Protein ima topologijo trolistnega vozla in je dodatno stabiliziran z interakcijami med peptidnimi segmenti v ogljiščih trikotne strukture. Ortogonalni peptidni segmenti se povezujejo s svojim parom ter ohranjajo celovitost strukture obvite vijačnice tudi v sklopu proteinskega origamija, hkrati pa opazimo primerljivo pakiranje homolognih aminokislinskih ostankov hidrofobne sredice. Kristalna struktura prinaša nov vpogled v razumevanje molekularnih mehanizmov zvijanja in stabilnosti trikotnikov iz obvitih vijačnic.

Language:Slovenian
Keywords:obvite vijačnice, proteinski origami, kristalna struktura
Work type:Doctoral dissertation
Organization:MF - Faculty of Medicine
Year:2024
PID:20.500.12556/RUL-158581 This link opens in a new window
Publication date in RUL:16.06.2024
Views:67
Downloads:38
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Stabilization and structural characterization of coiled-coil proteins
Abstract:
De novo protein design field explores novel protein folds that have not undergone evolutionary sampling. Despite the significant progress, extensive experimental validation is still required to identify the sequences with desired structure and function. An alternative strategy to protein scaffold design is based on modular building blocks with a well-understood sequence-structure relationship. Coiled-coil protein origami design strategy, coiled-coils are used as modular building blocks to design protein nanostructures. The desired shape is defined through the topological arrangement of parallel and/or anti-parallel coiled-coil dimers arranged into a precisely defined sequential order, based on the underlying mathematical rules. Although the coiled-coil protein origami has proven as a robust strategy for the design of various protein topologies, no high-resolution structural information is available for these structures. The main difficulty concerns the high flexibility and small size of origami structures, which makes them challenging to study using high-resolution methods, such as cryo-electron microscopy and x-ray crystallography. Here we tackled the challenge of structural characterisation of protein origami structures employing various methods. Our efforts resulted in a successful determination of a high-resolution structure of a coiled-coil protein origami triangle. We prepared stabilized protein origami triangles by using enhanced variants of the peptide segments. We also reduced the flexibility of the protein fold by using shorter linkers connecting these peptide segments. Our study showed that protein origamies additionally stabilized through covalent linking of the N- and C-termini, which we achieved by using split-inteins or an enzyme tyrosinase. Furthermore, we successfully prepared various protein complexes from protein origami and either nanobodies or legobody scaffold. These complexes were designed to facilitate protein crystallization or enhance particle size and contrast for structural analysis using a cryo-electron microscope. For complex preparation, we used both known coiled-coil binding nanobodies and nanobodies for which we transplanted an epitope onto the coiled-coil motif. We established a modular system for epitope transplantation of the Nb49 nanobody and the Ib3 intrabody, and confirmed their efficiency through several different protein constructs. By employing more stable peptide segments, shorter linkers, and integrating the natural homodimeric GCN2 peptide pair, we engineered a coiled-coil triangle named TRI-4SHbGCN, that successfully crystallized and diffracted in high resolution. Crystal structure confirmed designed triangular shape with the large central cavity and is additionally stabilized by side-chain interactions between neighbouring segments at each vertex. The orthogonal peptide segments associate with their pair and remain unperturbed in the context of protein origami structure. Interestingly, the polypeptide chain folds into a trefoil-type protein knot topology. The structure validates the modular CC-based protein design strategy, providing molecular insight underlying CCPO stabilization and new opportunities for improving the design.

Keywords:coiled-coils, coiled-coil protein origami, crystal structure

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back