izpis_h1_title_alt

Sistematični pregled raziskav vloge umetne inteligence pri bolnikih s sladkorno boleznijo
ID Vodopivec, Anej (Author), ID Horvat, Nejc (Mentor) More about this mentor... This link opens in a new window, ID Jazbar, Janja (Comentor)

.pdfPDF - Presentation file, Download (838,01 KB)
MD5: A69E87FA820F76B9732CD45A02C15327

Abstract
Sladkorna bolezen je ena najbolj razširjenih bolezni na svetu. Nastane kot posledica okvare trebušne slinavke, kar vodi v povišano koncentracijo glukoze v krvi. Na področju diagnosticiranja in zdravljenja različnih bolezni se vse bolj uveljavlja tehnologija umetne inteligence. Namen te magistrske naloge je bil sistematični pregled raziskav, ki proučujejo in vrednotijo uporabo umetne inteligence na področju diagnosticiranja, spremljanja in podpore pri zdravljenju sladkorne bolezni in pridruženih zapletov. Pri izdelavi in oblikovanju sistematičnega pregleda smo upoštevali kontrolni seznam in fazni diagram poteka PRISMA-kriterijev. S pomočjo izbranega iskalnega profila smo v bibliografski podatkovni bazi PubMed iskali vse raziskave na temo sladkorne bolezni in umetne inteligence. Raziskave smo analizirali glede na leto publikacije, državo izvedbe, vrsto raziskave, število in starost udeležencev, spolno strukturo vzorca, tip sladkorne bolezni, področje umetne inteligence in izbran algoritem ter glede na tematske sklope. Po upoštevanju vseh vključitvenih in izključitvenih kriterijev smo v sistematični pregled uvrstili 54 raziskav. Prevladovale so randomizirane kontrolirane raziskave (N = 25, 46,3 %), sledile so opazovalne kohortne raziskave (N = 18, 33,3 %) in opazovalne presečne raziskave (N = 11, 20,4 %). Največ raziskav je bilo izvedenih v Aziji (N = 24, 44,4 %) in Severni Ameriki (N = 23, 42,6 %), od tega 20 v ZDA (37 %) in devet na Kitajskem (16,7 %). V Evropi je bilo izvedenih 17 raziskav (31,5 %). Trend rasti števila publikacij skozi leta nakazuje na povečano uporabo metod umetne inteligence na različnih področjih sladkorne bolezni. Med različnimi metodami umetne inteligence najvidnejšo vlogo predstavlja strojno učenje, ki je bilo prisotno v približno 85 % raziskav. Večina raziskav je vključevala osebe s sladkorno boleznijo tipa 2 (N = 41, 75,9 %). Največ raziskav (N = 21, 38,9 %) je proučevalo vlogo umetne inteligence kot podpore pri samooskrbi in zdravljenju oseb s sladkorno boleznijo, v 14 raziskavah (25, 9 %) pa so na podlagi obdelave podatkov dejavnikov tveganja testirali napovedne modele za pojav sladkorne bolezni ali njenih zapletov. S področjem diabetične retinopatije se je ukvarjalo 12 raziskav (22,2 %), z diabetično nefropatijo pet raziskav (9,3 %) in z diabetično nevropatijo dve raziskavi (3,7 %). Rezultati večine raziskav, z izjemo treh, kažejo na pozitiven vpliv uporabe umetne inteligence in potencial za njeno nadaljnjo uporabo.

Language:Slovenian
Keywords:umetna inteligenca, sladkorna bolezen, strojno učenje, obdelava naravnega jezika
Work type:Master's thesis/paper
Organization:FFA - Faculty of Pharmacy
Year:2024
PID:20.500.12556/RUL-158521 This link opens in a new window
Publication date in RUL:14.06.2024
Views:293
Downloads:59
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Systematic review of research on the role of artificial intelligence in patients with diabetes
Abstract:
Diabetes is one of the most widespread diseases in the world. It occurs because of a malfunction of the pancreas, which leads to an increased concentration of glucose in the blood. Artificial intelligence technology is gaining ground in the field of diagnosis and treatment of various diseases. The purpose of this Master's thesis was a systematic review of research that examines and evaluates the use of artificial intelligence in the field of diagnosis, monitoring and support in the treatment of diabetes and associated complications. When creating and designing the systematic review, we considered the checklist and the phase diagram of the PRISMA criteria. Using the selected search profile, we searched for all research on the topic of diabetes and artificial intelligence in the PubMed bibliographic database. We analyzed the research according to the year of publication, the country of implementation, the type of research, the number and age of participants, gender structure of the sample, the type of diabetes, the field of artificial intelligence and the selected algorithm, and according to thematic groups. After considering all the inclusion and exclusion criteria, we included 54 studies in the systematic review. Randomized controlled trials predominated (N = 25, 46.3 %), followed by observational cohort studies (N = 18, 33.3 %) and observational cross-sectional studies (N = 11, 20.4 %). Most studies were conducted in Asia (N = 24, 44.4 %) and North America (N = 23, 42.6 %), including 20 in the USA (37 %) and 9 in China (16.7 %). 17 surveys (31.5 %) were conducted in Europe. The growing trend in the number of publications over the years indicates an increased use of artificial intelligence methods in various areas of diabetes. Among the various methods of artificial intelligence, machine learning plays the most prominent role, which was present in about 85% of the research. Most of the studies involved people with type 2 diabetes (N = 41, 75.9 %). Most studies (N = 21, 38.9 %) studied the role of artificial intelligence as a support in self-care and treatment of people with diabetes, and in 14 studies (25, 9 %) they tested predictive models for the occurrence of diabetes or its complications. 12 studies (22.2 %) dealt with the field of diabetic retinopathy, 5 studies (9.3%) with diabetic nephropathy and 2 studies (3.7 %) with diabetic neuropathy. The results of most of the studies, except for 3, show the positive impact of the use of artificial intelligence and the potential for its further use.

Keywords:artificial intelligence, diabetes, machine learning, natural language processing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back